-
Notifications
You must be signed in to change notification settings - Fork 241
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
139 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
# Copyright 2023 Huawei Technologies Co., Ltd | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================ | ||
""" | ||
T5Tokenizer | ||
""" | ||
|
||
import numpy as np | ||
from mindspore.dataset.text.transforms import Implementation | ||
from tokenizers import Tokenizer | ||
from mindnlp.abc import PreTrainedTokenizer | ||
from mindnlp.models.longformer.longformer_config import LONGFORMER_SUPPORT_LIST | ||
from mindnlp.configs import HF_TOKENIZER_CONFIG_URL_BASE | ||
|
||
PRETRAINED_VOCAB_MAP = { | ||
model: HF_TOKENIZER_CONFIG_URL_BASE.format(model) for model in LONGFORMER_SUPPORT_LIST | ||
} | ||
|
||
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | ||
"t5-small": 512, | ||
"t5-base": 512, | ||
"t5-large": 512, | ||
"t5-3b": 512, | ||
"t5-11b": 512, | ||
} | ||
|
||
class LongformerTokenizer(PreTrainedTokenizer): | ||
""" | ||
Tokenizer used for T5 text process. | ||
Args: | ||
vocab (Vocab): Vocabulary used to look up words. | ||
return_token (bool): Whether to return token. If True: return tokens. False: return ids. Default: True. | ||
Examples: | ||
>>> from mindspore.dataset import text | ||
>>> from mindnlp.transforms import T5Tokenizer | ||
>>> text = "Believing that faith can triumph over everything is in itself the greatest belief" | ||
>>> tokenizer = T5Tokenizer.from_pretrained('t5-base') | ||
>>> tokens = tokenizer.encode(text) | ||
""" | ||
|
||
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | ||
pretrained_vocab_map = PRETRAINED_VOCAB_MAP | ||
|
||
def __init__(self, vocab: str, **kwargs): | ||
super().__init__() | ||
return_token = kwargs.pop('return_token', False) | ||
|
||
if isinstance(vocab, str): | ||
self.tokenizer = Tokenizer.from_file(vocab) | ||
else: | ||
raise ValueError(f'only support string, but got {vocab}') | ||
self.return_token = return_token | ||
self.implementation = Implementation.PY | ||
|
||
def __call__(self, text_input): | ||
""" | ||
Call method for input conversion for eager mode with C++ implementation. | ||
""" | ||
if isinstance(text_input, str): | ||
text_input = np.array(text_input) | ||
elif not isinstance(text_input, np.ndarray): | ||
raise TypeError( | ||
f"Input should be a text line in 1-D NumPy format, got {type(text_input)}.") | ||
return super().__call__(text_input) | ||
|
||
def execute_py(self, text_input): | ||
""" | ||
Execute method. | ||
""" | ||
return self._execute_py(text_input) | ||
|
||
def _execute_py(self, text_input): | ||
""" | ||
Execute method. | ||
""" | ||
text_input = self._convert_to_unicode(text_input) | ||
tokens = self.tokenizer.encode(text_input) | ||
if self.return_token is True: | ||
return np.array(tokens.tokens) | ||
return np.array(tokens.ids) | ||
|
||
def _convert_to_unicode(self, text_input): | ||
"""Converts `text` to Unicode (if it's not already), assuming utf-8 input.""" | ||
if isinstance(text_input, str): | ||
return text_input | ||
if isinstance(text_input, bytes): | ||
return text_input.decode("utf-8", "ignore") | ||
if isinstance(text_input, np.ndarray): | ||
if text_input.dtype.type is np.bytes_: | ||
text_input = np.char.decode(text_input, "utf-8") | ||
return str(text_input) | ||
raise ValueError(f"Unsupported string type: {type(text_input)}, {text_input.dtype}") | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
# Copyright 2023 Huawei Technologies Co., Ltd | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================ | ||
"""Test the T5Tokenizer""" | ||
|
||
import mindspore as ms | ||
from mindspore.dataset import GeneratorDataset | ||
from mindnlp.transforms import LongformerTokenizer | ||
|
||
def test_longformer_tokenizer_op(): | ||
"""test T5Tokenizer from pretrained.""" | ||
texts = ['i make a small mistake when i\'m working!'] | ||
test_dataset = GeneratorDataset(texts, 'text') | ||
|
||
tokenizer = LongformerTokenizer.from_pretrained('allenai/longformer-base-4096', return_token=True) | ||
test_dataset = test_dataset.map(operations=tokenizer) | ||
dataset_after = next(test_dataset.create_tuple_iterator())[0] | ||
|
||
assert len(dataset_after) == 12 | ||
assert dataset_after.dtype == ms.string |