Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[FIX] Fix mypy errors #1419

Merged
merged 2 commits into from
Jan 4, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
mypy error fixes / ignores
  • Loading branch information
felixdittrich92 committed Jan 3, 2024
commit 7e7c00cfea8ad2e0624290854572f9a7290eeb7b
4 changes: 2 additions & 2 deletions .github/workflows/style.yml
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ jobs:
strategy:
matrix:
os: [ubuntu-latest]
python: ["3.10"]
python: ["3.8"]
steps:
- uses: actions/checkout@v3
- name: Set up Python
Expand All @@ -31,7 +31,7 @@ jobs:
strategy:
matrix:
os: [ubuntu-latest]
python: ["3.10"]
python: ["3.8"]
steps:
- uses: actions/checkout@v3
- name: Set up Python
Expand Down
2 changes: 1 addition & 1 deletion doctr/datasets/imgur5k.py
Original file line number Diff line number Diff line change
Expand Up @@ -112,7 +112,7 @@ def __init__(
if ann["word"] != "."
]
# (x, y) coordinates of top left, top right, bottom right, bottom left corners
box_targets = [cv2.boxPoints(((box[0], box[1]), (box[2], box[3]), box[4])) for box in _boxes]
box_targets = [cv2.boxPoints(((box[0], box[1]), (box[2], box[3]), box[4])) for box in _boxes] # type: ignore[arg-type]

if not use_polygons:
# xmin, ymin, xmax, ymax
Expand Down
4 changes: 2 additions & 2 deletions doctr/models/_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,14 +51,14 @@ def estimate_orientation(img: np.ndarray, n_ct: int = 50, ratio_threshold_for_li
if max_value <= 255 and min_value >= 0 and img.shape[-1] == 3:
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray_img = cv2.medianBlur(gray_img, 5)
thresh = cv2.threshold(gray_img, thresh=0, maxval=255, type=cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
thresh = cv2.threshold(gray_img, thresh=0, maxval=255, type=cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1] # type: ignore[assignment]

# try to merge words in lines
(h, w) = img.shape[:2]
k_x = max(1, (floor(w / 100)))
k_y = max(1, (floor(h / 100)))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (k_x, k_y))
thresh = cv2.dilate(thresh, kernel, iterations=1)
thresh = cv2.dilate(thresh, kernel, iterations=1) # type: ignore[assignment]

# extract contours
contours, _ = cv2.findContours(thresh, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
Expand Down
2 changes: 1 addition & 1 deletion doctr/models/detection/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@ def box_score(pred: np.ndarray, points: np.ndarray, assume_straight_pages: bool

else:
mask: np.ndarray = np.zeros((h, w), np.int32)
cv2.fillPoly(mask, [points.astype(np.int32)], 1.0)
cv2.fillPoly(mask, [points.astype(np.int32)], 1.0) # type: ignore[call-overload]
product = pred * mask
return np.sum(product) / np.count_nonzero(product)

Expand Down
6 changes: 3 additions & 3 deletions doctr/models/detection/differentiable_binarization/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,7 @@ def polygon_to_box(
if len(expanded_points) < 1:
return None # type: ignore[return-value]
return (
cv2.boundingRect(expanded_points)
cv2.boundingRect(expanded_points) # type: ignore[return-value]
if self.assume_straight_pages
else np.roll(cv2.boxPoints(cv2.minAreaRect(expanded_points)), -1, axis=0)
)
Expand Down Expand Up @@ -233,7 +233,7 @@ def draw_thresh_map(
padded_polygon: np.ndarray = np.array(padding.Execute(distance)[0])

# Fill the mask with 1 on the new padded polygon
cv2.fillPoly(mask, [padded_polygon.astype(np.int32)], 1.0)
cv2.fillPoly(mask, [padded_polygon.astype(np.int32)], 1.0) # type: ignore[call-overload]

# Get min/max to recover polygon after distance computation
xmin = padded_polygon[:, 0].min()
Expand Down Expand Up @@ -351,7 +351,7 @@ def build_target(
# seg_mask[idx, box[1] : box[3] + 1, box[0] : box[2] + 1, class_idx] = False
seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False
continue
cv2.fillPoly(seg_target[idx, class_idx], [shrinked.astype(np.int32)], 1)
cv2.fillPoly(seg_target[idx, class_idx], [shrinked.astype(np.int32)], 1.0) # type: ignore[call-overload]

# Draw on both thresh map and thresh mask
poly, thresh_target[idx, class_idx], thresh_mask[idx, class_idx] = self.draw_thresh_map(
Expand Down
4 changes: 2 additions & 2 deletions doctr/models/detection/linknet/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,7 @@ def polygon_to_box(
if len(expanded_points) < 1:
return None # type: ignore[return-value]
return (
cv2.boundingRect(expanded_points)
cv2.boundingRect(expanded_points) # type: ignore[return-value]
if self.assume_straight_pages
else np.roll(cv2.boxPoints(cv2.minAreaRect(expanded_points)), -1, axis=0)
)
Expand Down Expand Up @@ -246,7 +246,7 @@ def build_target(
if shrunken.shape[0] <= 2 or not Polygon(shrunken).is_valid:
seg_mask[idx, class_idx, box[1] : box[3] + 1, box[0] : box[2] + 1] = False
continue
cv2.fillPoly(seg_target[idx, class_idx], [shrunken.astype(np.int32)], 1)
cv2.fillPoly(seg_target[idx, class_idx], [shrunken.astype(np.int32)], 1.0) # type: ignore[call-overload]

# Don't forget to switch back to channel last if Tensorflow is used
if channels_last:
Expand Down
2 changes: 1 addition & 1 deletion doctr/transforms/functional/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -200,4 +200,4 @@ def create_shadow_mask(
mask: np.ndarray = np.zeros((*target_shape, 1), dtype=np.uint8)
mask = cv2.fillPoly(mask, [final_contour], (255,), lineType=cv2.LINE_AA)[..., 0]

return (mask / 255).astype(np.float32).clip(0, 1) * intensity_mask.astype(np.float32)
return (mask / 255).astype(np.float32).clip(0, 1) * intensity_mask.astype(np.float32) # type: ignore[operator]
2 changes: 1 addition & 1 deletion doctr/utils/geometry.py
Original file line number Diff line number Diff line change
Expand Up @@ -102,7 +102,7 @@ def resolve_enclosing_rbbox(rbboxes: List[np.ndarray], intermed_size: int = 1024
# Convert to absolute for minAreaRect
cloud *= intermed_size
rect = cv2.minAreaRect(cloud.astype(np.int32))
return cv2.boxPoints(rect) / intermed_size
return cv2.boxPoints(rect) / intermed_size # type: ignore[operator]


def rotate_abs_points(points: np.ndarray, angle: float = 0.0) -> np.ndarray:
Expand Down
4 changes: 2 additions & 2 deletions doctr/utils/metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -274,7 +274,7 @@ def _rbox_to_mask(box: np.ndarray, shape: Tuple[int, int]) -> np.ndarray:
else:
abs_box = box
abs_box[2:] = abs_box[2:] + 1
cv2.fillPoly(mask, [abs_box - 1], 1)
cv2.fillPoly(mask, [abs_box - 1], 1.0) # type: ignore[call-overload]

return mask.astype(bool)

Expand Down Expand Up @@ -306,7 +306,7 @@ def rbox_to_mask(boxes: np.ndarray, shape: Tuple[int, int]) -> np.ndarray:

# TODO: optimize slicing to improve vectorization
for idx, _box in enumerate(abs_boxes):
cv2.fillPoly(masks[idx], [_box - 1], 1)
cv2.fillPoly(masks[idx], [_box - 1], 1.0) # type: ignore[call-overload]
return masks.astype(bool)


Expand Down
Loading