forked from RaspberryEmma/Mixed-Integer-Linear-Programming
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlp_model_output.txt
121 lines (109 loc) · 3.82 KB
/
lp_model_output.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
Thu Dec 09 2021 19:29:47 GMT+0000 (Greenwich Mean Time)
FICO Xpress Mosel 64-bit v5.8.0, FICO Xpress v8.13.0
(c) Copyright Fair Isaac Corporation 2001-2021. All rights reserved
Compiling lp_model.mos to out\lp_model.bim with -g
Running model
Sanity check of columns sums in M:
Con j = 1, sum (of shires i) of M(i, j) = 1
Con j = 2, sum (of shires i) of M(i, j) = 1
Con j = 3, sum (of shires i) of M(i, j) = 1
Con j = 4, sum (of shires i) of M(i, j) = 2
Con j = 5, sum (of shires i) of M(i, j) = 2
Con j = 6, sum (of shires i) of M(i, j) = 2
Con j = 7, sum (of shires i) of M(i, j) = 2
Con j = 8, sum (of shires i) of M(i, j) = 2
Con j = 9, sum (of shires i) of M(i, j) = 2
Con j = 10, sum (of shires i) of M(i, j) = 2
Con j = 11, sum (of shires i) of M(i, j) = 2
Con j = 12, sum (of shires i) of M(i, j) = 2
Con j = 13, sum (of shires i) of M(i, j) = 2
Con j = 14, sum (of shires i) of M(i, j) = 2
Con j = 15, sum (of shires i) of M(i, j) = 2
Con j = 16, sum (of shires i) of M(i, j) = 2
Con j = 17, sum (of shires i) of M(i, j) = 2
Con j = 18, sum (of shires i) of M(i, j) = 2
Con j = 19, sum (of shires i) of M(i, j) = 2
Con j = 20, sum (of shires i) of M(i, j) = 2
Con j = 21, sum (of shires i) of M(i, j) = 2
Con j = 22, sum (of shires i) of M(i, j) = 2
Con j = 23, sum (of shires i) of M(i, j) = 2
Con j = 24, sum (of shires i) of M(i, j) = 2
Con j = 25, sum (of shires i) of M(i, j) = 2
Con j = 26, sum (of shires i) of M(i, j) = 2
Con j = 27, sum (of shires i) of M(i, j) = 2
Con j = 28, sum (of shires i) of M(i, j) = 3
Con j = 29, sum (of shires i) of M(i, j) = 3
Con j = 30, sum (of shires i) of M(i, j) = 3
Con j = 31, sum (of shires i) of M(i, j) = 3
Con j = 32, sum (of shires i) of M(i, j) = 3
Con j = 33, sum (of shires i) of M(i, j) = 3
Con j = 34, sum (of shires i) of M(i, j) = 3
Con j = 35, sum (of shires i) of M(i, j) = 3
Con j = 36, sum (of shires i) of M(i, j) = 3
Con j = 37, sum (of shires i) of M(i, j) = 3
Con j = 38, sum (of shires i) of M(i, j) = 3
Con j = 39, sum (of shires i) of M(i, j) = 3
Con j = 40, sum (of shires i) of M(i, j) = 3
Con j = 41, sum (of shires i) of M(i, j) = 3
Con j = 42, sum (of shires i) of M(i, j) = 3
Con j = 43, sum (of shires i) of M(i, j) = 3
Con j = 44, sum (of shires i) of M(i, j) = 3
Con j = 45, sum (of shires i) of M(i, j) = 3
Con j = 46, sum (of shires i) of M(i, j) = 3
Con j = 47, sum (of shires i) of M(i, j) = 3
Con j = 48, sum (of shires i) of M(i, j) = 3
Con j = 49, sum (of shires i) of M(i, j) = 4
Begin running model
Optimal number of representatives = 5
Solution of Chosen Constituencies:
con = 1, x = 0
con = 2, x = 0
con = 3, x = 0
con = 4, x = 0
con = 5, x = 0
con = 6, x = 0
con = 7, x = 0
con = 8, x = 1
con = 9, x = 0
con = 10, x = 0
con = 11, x = 0
con = 12, x = 0
con = 13, x = 0
con = 14, x = 0
con = 15, x = 0
con = 16, x = 0
con = 17, x = 0
con = 18, x = 0
con = 19, x = 0
con = 20, x = 0
con = 21, x = 1
con = 22, x = 1
con = 23, x = 0
con = 24, x = 0
con = 25, x = 0
con = 26, x = 0
con = 27, x = 1
con = 28, x = 1
con = 29, x = 0
con = 30, x = 0
con = 31, x = 0
con = 32, x = 0
con = 33, x = 0
con = 34, x = 0
con = 35, x = 0
con = 36, x = 0
con = 37, x = 0
con = 38, x = 1
con = 39, x = 0
con = 40, x = 0
con = 41, x = 0
con = 42, x = 0
con = 43, x = 0
con = 44, x = 0
con = 45, x = 0
con = 46, x = 0
con = 47, x = 0
con = 48, x = 0
con = 49, x = 0
End running model
Process exited with code: 0