-
Notifications
You must be signed in to change notification settings - Fork 2.7k
/
Copy pathpytorch_nn.py
360 lines (320 loc) · 12.5 KB
/
pytorch_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from __future__ import division
from __future__ import print_function
import os
import numpy as np
import pandas as pd
from typing import Text, Union
from sklearn.metrics import roc_auc_score, mean_squared_error
import torch
import torch.nn as nn
import torch.optim as optim
from .pytorch_utils import count_parameters
from ...model.base import Model
from ...data.dataset import DatasetH
from ...data.dataset.handler import DataHandlerLP
from ...utils import unpack_archive_with_buffer, save_multiple_parts_file, get_or_create_path
from ...log import get_module_logger
from ...workflow import R
class DNNModelPytorch(Model):
"""DNN Model
Parameters
----------
input_dim : int
input dimension
output_dim : int
output dimension
layers : tuple
layer sizes
lr : float
learning rate
lr_decay : float
learning rate decay
lr_decay_steps : int
learning rate decay steps
optimizer : str
optimizer name
GPU : int
the GPU ID used for training
"""
def __init__(
self,
input_dim=360,
output_dim=1,
layers=(256,),
lr=0.001,
max_steps=300,
batch_size=2000,
early_stop_rounds=50,
eval_steps=20,
lr_decay=0.96,
lr_decay_steps=100,
optimizer="gd",
loss="mse",
GPU=0,
seed=None,
weight_decay=0.0,
**kwargs
):
# Set logger.
self.logger = get_module_logger("DNNModelPytorch")
self.logger.info("DNN pytorch version...")
# set hyper-parameters.
self.layers = layers
self.lr = lr
self.max_steps = max_steps
self.batch_size = batch_size
self.early_stop_rounds = early_stop_rounds
self.eval_steps = eval_steps
self.lr_decay = lr_decay
self.lr_decay_steps = lr_decay_steps
self.optimizer = optimizer.lower()
self.loss_type = loss
self.device = torch.device("cuda:%d" % (GPU) if torch.cuda.is_available() and GPU >= 0 else "cpu")
self.seed = seed
self.weight_decay = weight_decay
self.logger.info(
"DNN parameters setting:"
"\nlayers : {}"
"\nlr : {}"
"\nmax_steps : {}"
"\nbatch_size : {}"
"\nearly_stop_rounds : {}"
"\neval_steps : {}"
"\nlr_decay : {}"
"\nlr_decay_steps : {}"
"\noptimizer : {}"
"\nloss_type : {}"
"\neval_steps : {}"
"\nseed : {}"
"\ndevice : {}"
"\nuse_GPU : {}"
"\nweight_decay : {}".format(
layers,
lr,
max_steps,
batch_size,
early_stop_rounds,
eval_steps,
lr_decay,
lr_decay_steps,
optimizer,
loss,
eval_steps,
seed,
self.device,
self.use_gpu,
weight_decay,
)
)
if self.seed is not None:
np.random.seed(self.seed)
torch.manual_seed(self.seed)
if loss not in {"mse", "binary"}:
raise NotImplementedError("loss {} is not supported!".format(loss))
self._scorer = mean_squared_error if loss == "mse" else roc_auc_score
self.dnn_model = Net(input_dim, output_dim, layers, loss=self.loss_type)
self.logger.info("model:\n{:}".format(self.dnn_model))
self.logger.info("model size: {:.4f} MB".format(count_parameters(self.dnn_model)))
if optimizer.lower() == "adam":
self.train_optimizer = optim.Adam(self.dnn_model.parameters(), lr=self.lr, weight_decay=self.weight_decay)
elif optimizer.lower() == "gd":
self.train_optimizer = optim.SGD(self.dnn_model.parameters(), lr=self.lr, weight_decay=self.weight_decay)
else:
raise NotImplementedError("optimizer {} is not supported!".format(optimizer))
# Reduce learning rate when loss has stopped decrease
self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
self.train_optimizer,
mode="min",
factor=0.5,
patience=10,
verbose=True,
threshold=0.0001,
threshold_mode="rel",
cooldown=0,
min_lr=0.00001,
eps=1e-08,
)
self.fitted = False
self.dnn_model.to(self.device)
@property
def use_gpu(self):
return self.device != torch.device("cpu")
def fit(
self,
dataset: DatasetH,
evals_result=dict(),
verbose=True,
save_path=None,
):
df_train, df_valid = dataset.prepare(
["train", "valid"], col_set=["feature", "label"], data_key=DataHandlerLP.DK_L
)
x_train, y_train = df_train["feature"], df_train["label"]
x_valid, y_valid = df_valid["feature"], df_valid["label"]
try:
wdf_train, wdf_valid = dataset.prepare(["train", "valid"], col_set=["weight"], data_key=DataHandlerLP.DK_L)
w_train, w_valid = wdf_train["weight"], wdf_valid["weight"]
except KeyError as e:
w_train = pd.DataFrame(np.ones_like(y_train.values), index=y_train.index)
w_valid = pd.DataFrame(np.ones_like(y_valid.values), index=y_valid.index)
save_path = get_or_create_path(save_path)
stop_steps = 0
train_loss = 0
best_loss = np.inf
evals_result["train"] = []
evals_result["valid"] = []
# train
self.logger.info("training...")
self.fitted = True
# return
# prepare training data
x_train_values = torch.from_numpy(x_train.values).float()
y_train_values = torch.from_numpy(y_train.values).float()
w_train_values = torch.from_numpy(w_train.values).float()
train_num = y_train_values.shape[0]
# prepare validation data
x_val_auto = torch.from_numpy(x_valid.values).float().to(self.device)
y_val_auto = torch.from_numpy(y_valid.values).float().to(self.device)
w_val_auto = torch.from_numpy(w_valid.values).float().to(self.device)
for step in range(self.max_steps):
if stop_steps >= self.early_stop_rounds:
if verbose:
self.logger.info("\tearly stop")
break
loss = AverageMeter()
self.dnn_model.train()
self.train_optimizer.zero_grad()
choice = np.random.choice(train_num, self.batch_size)
x_batch_auto = x_train_values[choice].to(self.device)
y_batch_auto = y_train_values[choice].to(self.device)
w_batch_auto = w_train_values[choice].to(self.device)
# forward
preds = self.dnn_model(x_batch_auto)
cur_loss = self.get_loss(preds, w_batch_auto, y_batch_auto, self.loss_type)
cur_loss.backward()
self.train_optimizer.step()
loss.update(cur_loss.item())
R.log_metrics(train_loss=loss.avg, step=step)
# validation
train_loss += loss.val
# for evert `eval_steps` steps or at the last steps, we will evaluate the model.
if step % self.eval_steps == 0 or step + 1 == self.max_steps:
stop_steps += 1
train_loss /= self.eval_steps
with torch.no_grad():
self.dnn_model.eval()
loss_val = AverageMeter()
# forward
preds = self.dnn_model(x_val_auto)
cur_loss_val = self.get_loss(preds, w_val_auto, y_val_auto, self.loss_type)
loss_val.update(cur_loss_val.item())
R.log_metrics(val_loss=loss_val.val, step=step)
if verbose:
self.logger.info(
"[Epoch {}]: train_loss {:.6f}, valid_loss {:.6f}".format(step, train_loss, loss_val.val)
)
evals_result["train"].append(train_loss)
evals_result["valid"].append(loss_val.val)
if loss_val.val < best_loss:
if verbose:
self.logger.info(
"\tvalid loss update from {:.6f} to {:.6f}, save checkpoint.".format(
best_loss, loss_val.val
)
)
best_loss = loss_val.val
stop_steps = 0
torch.save(self.dnn_model.state_dict(), save_path)
train_loss = 0
# update learning rate
self.scheduler.step(cur_loss_val)
# restore the optimal parameters after training
self.dnn_model.load_state_dict(torch.load(save_path))
if self.use_gpu:
torch.cuda.empty_cache()
def get_loss(self, pred, w, target, loss_type):
if loss_type == "mse":
sqr_loss = torch.mul(pred - target, pred - target)
loss = torch.mul(sqr_loss, w).mean()
return loss
elif loss_type == "binary":
loss = nn.BCELoss(weight=w)
return loss(pred, target)
else:
raise NotImplementedError("loss {} is not supported!".format(loss_type))
def predict(self, dataset: DatasetH, segment: Union[Text, slice] = "test"):
if not self.fitted:
raise ValueError("model is not fitted yet!")
x_test_pd = dataset.prepare(segment, col_set="feature", data_key=DataHandlerLP.DK_I)
x_test = torch.from_numpy(x_test_pd.values).float().to(self.device)
self.dnn_model.eval()
with torch.no_grad():
preds = self.dnn_model(x_test).detach().cpu().numpy()
return pd.Series(np.squeeze(preds), index=x_test_pd.index)
def save(self, filename, **kwargs):
with save_multiple_parts_file(filename) as model_dir:
model_path = os.path.join(model_dir, os.path.split(model_dir)[-1])
# Save model
torch.save(self.dnn_model.state_dict(), model_path)
def load(self, buffer, **kwargs):
with unpack_archive_with_buffer(buffer) as model_dir:
# Get model name
_model_name = os.path.splitext(list(filter(lambda x: x.startswith("model.bin"), os.listdir(model_dir)))[0])[
0
]
_model_path = os.path.join(model_dir, _model_name)
# Load model
self.dnn_model.load_state_dict(torch.load(_model_path))
self.fitted = True
class AverageMeter:
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class Net(nn.Module):
def __init__(self, input_dim, output_dim, layers=(256, 512, 768, 512, 256, 128, 64), loss="mse"):
super(Net, self).__init__()
layers = [input_dim] + list(layers)
dnn_layers = []
drop_input = nn.Dropout(0.05)
dnn_layers.append(drop_input)
for i, (input_dim, hidden_units) in enumerate(zip(layers[:-1], layers[1:])):
fc = nn.Linear(input_dim, hidden_units)
activation = nn.LeakyReLU(negative_slope=0.1, inplace=False)
bn = nn.BatchNorm1d(hidden_units)
seq = nn.Sequential(fc, bn, activation)
dnn_layers.append(seq)
drop_input = nn.Dropout(0.05)
dnn_layers.append(drop_input)
if loss == "mse":
fc = nn.Linear(hidden_units, output_dim)
dnn_layers.append(fc)
elif loss == "binary":
fc = nn.Linear(hidden_units, output_dim)
sigmoid = nn.Sigmoid()
dnn_layers.append(nn.Sequential(fc, sigmoid))
else:
raise NotImplementedError("loss {} is not supported!".format(loss))
# optimizer
self.dnn_layers = nn.ModuleList(dnn_layers)
self._weight_init()
def _weight_init(self):
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.kaiming_normal_(m.weight, a=0.1, mode="fan_in", nonlinearity="leaky_relu")
def forward(self, x):
cur_output = x
for i, now_layer in enumerate(self.dnn_layers):
cur_output = now_layer(cur_output)
return cur_output