forked from EcoForecast/PhenologyForecast
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathCreate_ForecastModel.R
155 lines (126 loc) · 4.92 KB
/
Create_ForecastModel.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
### NOTES
## Mtime needs to be defined somehow or replaced
## NDVI_GCC_filter_sd cannot be 0 because of how we are using it
## Super Simple Stochastic Logistic Model
## X = [phenology]
## timestep is in seconds, defaults to 1 day
## X input going into SSSLM is going to be the previous state X estimate (i-1) (for loop from 2:length(timestep))
SSSLM <- function(X,params,inputs,timestep=1800) {
ne = nrow(X) ## ne = number of ensemble members
## growth
r ~ dnorm(0.5,110) ## growth rate for phenology model
r_add=.71
## update states for phenology model
Xnew = matrix(NA,ne,1)
for (i in 2:length(X)) {
Xnew = max(0,min(1,X - r * X * (1-X) ))
return(data.frame(X1=Xnew))
}
## define CI Envelope function
ciEnvelope <- function(x,ylo,yhi,...){
polygon(cbind(c(x, rev(x), x[1]), c(ylo, rev(yhi),
ylo[1])), border = NA,...)
}
## define colors function
col.alpha <- function(col,alpha=1){
rgb = col2rgb(col)
rgb(rgb[1],rgb[2],rgb[3],alpha*255,maxColorValue=255)
}
## weighted quantile
wtd.quantile <- function(x,wt,q){
ord <- order(x)
wstar <- cumsum(wt[ord])/sum(wt)
qi <- findInterval(q,wstar); qi[qi<1]=1;qi[qi>length(x)]=length(x)
return(x[ord[qi]])
}
## source("SetEnsembleSize.r")
## X.orig = SetEnsembleSize()
ne = 10 ## ensemble size
### Initial State (Mg/ha)
X = 1
if (ne > 1) {
X = rnorm(ne,X,sd(0.0001))
}
X.orig = X
##### here we use state space outputs to set priors for the particle filter
#### generate initial ensemble forecast
nt = 800 ##length(time)
## time is our model driver
## get current date and day of year (between 182 to 365)
cur_date = Sys.Date()
doy <- strftime(cur_date, format = "%j")
## defines time vector as model driver
time = 182:doy
## r is defined from state space output
output = array(NA,c(nt,ne,1))
for(t in 1:nt){
output[t,,]=as.matrix(SSSLM(X,r,time[t]))
X=output[t,,]
}
## read in state space x output
## read in historical data
## GCC =
## NDVI =
## filter with GCC and NDVI
## include if/else statement to constrain filter to use one data source if other data source has NA values
for (i = 1:length(GCC)) {
if (!is.na(GCC(i))) && (!is.na(NDVI(i))) {
NDVI_GCC_filter(i) = 0.5*GCC(i) + 0.5*NDVI(i)}
else if (!is.na(GCC(i))) && (is.na(NDVI(i))) {
NDVI_GCC_filter(i)= GCC(i) }
else if (is.na(NDVI(i))) && (!is.na(NDVI(i))) {
NDVI_GCC_filter(i) = NDVI(i) }
}
## Calculate model ensemble means for same periods
window = rep(1,each=48*1,length=nt)
NDVI_GCC_m = t(apply(output[,,2],2,tapply,window,mean))
NDVI_GCC_m.ci = apply(NDVI_GCC_m,2,quantile,c(0.025,0.5,0.975))
## plot model and observations
Msel = 1:ncol(NDVI_GCC_m.ci)
plot(Mtime[Msel],NDVI_GCC_m.ci[2,],ylab="NDVI_GCC",xlab="Time",
ylim=range(c(range(NDVI_GCC_m.ci.ci),range(NDVI_GCC_filter,na.rm=TRUE))),type='n')
ciEnvelope(Mtime[Msel],NDVI_GCC_m.ci[1,],NDVI_GCC_m.ci[3,],col=col.alpha("lightGrey",0.5))
points(Mtime,NDVI_GCC_filter)
for(i in 1:length(NDVI_GCC_filter)){
lines(rep(Mtime[i],2),NDVI_GCC_filter[i]+c(-1,1)*NDVI_GCC_filter.sd[i])
}
### resampling particle filter
sample=0
hist.params=list() ## since we resample parameters, create a record (history) of what values were used each step
hist.params[[1]] = r
X = X.orig ## reset state to the initial values, not the final values from the previous ensemble
for(t in 1:nt){
## forward step
output[t,,]=as.matrix(SSSLM(X,r,time[t]))
X=output[t,,]
## analysis step
## changed analysis step to 48*1 to be 1/day
if(t%%(48*1) == 0){ ## if remainder == 0
sample = sample+1
print(sample)
if(!is.na(NDVI_GCC_filter[sample])){ ## if observation is present
## calulate Likelihood (weights)
Lm = apply(output[t+1-(48*1):1, ,2],2,mean) ## model NDVI_GCC filter over obs period
## set std for filter to zero for now, make stochastic later
NDVI_GCC_filter.sd = 0
wt = dnorm(NDVI_GCC_filter[sample],Lm,NDVI_GCC_filter.sd)
## resample
index = sample.int(ne,ne,replace=TRUE,prob=wt)
X = X[index]
### still need to define update.r
r = update.r(r,index)
}
hist.params[[sample+1]] = r
}
}
## Extract and summarize NDVI_GCC FILTER (pr = resampling PF)
NDVI_GCC_filter.pr = t(apply(output[,,2],2,tapply,window,mean))
NDVI_GCC_filter.ci = apply(NDVI_GCC_filter.pr,2,quantile,c(0.025,0.5,0.975))
plot(Mtime[Msel],NDVI_GCC_filter.ci[2,],ylim=range(c(range(LAIm.ci),range(NDVI_GCC_filter,na.rm=TRUE))),
type='n',ylab="NDVI_GCC",xlab="Time")
ciEnvelope(Mtime[Msel],NDVI_GCC_m.ci[1,],NDVI_GCC_m.ci[3,],col=col.alpha("lightGrey",0.5))
ciEnvelope(Mtime[Msel],NDVI_GCC_filter.ci[1,],NDVI_GCC_filter.ci[3,],col=col.alpha("lightGreen",0.5))
points(Mtime,NDVI_GCC_filter)
for(i in 1:length(NDVI_GCC_filter)){
lines(rep(Mtime[i],2),NDVI_GCC_filter[i]+c(-1,1)*LAIr.sd[i])
}