forked from castorini/castor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
210 lines (178 loc) · 8.14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import time
import os
import numpy as np
import random
import torch
import torch.nn as nn
import torch.onnx
from torchtext import data
from args import get_args
from model import SmPlusPlus
from utils.relevancy_metrics import get_map_mrr
from trec_dataset import TrecDataset
from wiki_dataset import WikiDataset
args = get_args()
config = args
torch.manual_seed(args.seed)
def set_vectors(field, vector_path):
if os.path.isfile(vector_path):
stoi, vectors, dim = torch.load(vector_path)
field.vocab.vectors = torch.Tensor(len(field.vocab), dim)
for i, token in enumerate(field.vocab.itos):
wv_index = stoi.get(token, None)
if wv_index is not None:
field.vocab.vectors[i] = vectors[wv_index]
else:
# initialize <unk> with U(-0.25, 0.25) vectors
field.vocab.vectors[i] = torch.FloatTensor(dim).uniform_(-0.25, 0.25)
else:
print("Error: Need word embedding pt file")
exit(1)
return field
# Set default configuration in : args.py
args = get_args()
config = args
# Set random seed for reproducibility
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
if not args.cuda:
args.gpu = -1
if torch.cuda.is_available() and args.cuda:
print("Note: You are using GPU for training")
torch.cuda.set_device(args.gpu)
torch.cuda.manual_seed(args.seed)
if torch.cuda.is_available() and not args.cuda:
print("You have Cuda but you're using CPU for training.")
np.random.seed(args.seed)
random.seed(args.seed)
QID = data.Field(sequential=False)
QUESTION = data.Field(batch_first=True)
ANSWER = data.Field(batch_first=True)
LABEL = data.Field(sequential=False)
EXTERNAL = data.Field(sequential=True, tensor_type=torch.FloatTensor, batch_first=True, use_vocab=False,
postprocessing=data.Pipeline(lambda arr, _, train: [float(y) for y in arr]))
if config.dataset == 'TREC':
train, dev, test = TrecDataset.splits(QID, QUESTION, ANSWER, EXTERNAL, LABEL)
elif config.dataset == 'wiki':
train, dev, test = WikiDataset.splits(QID, QUESTION, ANSWER, EXTERNAL, LABEL)
else:
print("Unsupported dataset")
exit()
QID.build_vocab(train, dev, test)
QUESTION.build_vocab(train, dev, test)
ANSWER.build_vocab(train, dev, test)
LABEL.build_vocab(train, dev, test)
QUESTION = set_vectors(QUESTION, args.vector_cache)
ANSWER = set_vectors(ANSWER, args.vector_cache)
train_iter = data.Iterator(train, batch_size=args.batch_size, device=args.gpu, train=True, repeat=False,
sort=False, shuffle=True)
dev_iter = data.Iterator(dev, batch_size=args.batch_size, device=args.gpu, train=False, repeat=False,
sort=False, shuffle=False)
test_iter = data.Iterator(test, batch_size=args.batch_size, device=args.gpu, train=False, repeat=False,
sort=False, shuffle=False)
config.target_class = len(LABEL.vocab)
config.questions_num = len(QUESTION.vocab)
config.answers_num = len(ANSWER.vocab)
print("Dataset {} Mode {}".format(args.dataset, args.mode))
print("VOCAB num", len(QUESTION.vocab))
print("LABEL.target_class:", len(LABEL.vocab))
print("LABELS:", LABEL.vocab.itos)
print("Train instance", len(train))
print("Dev instance", len(dev))
print("Test instance", len(test))
if args.resume_snapshot:
if args.cuda:
model = torch.load(args.resume_snapshot, map_location=lambda storage, location: storage.cuda(args.gpu))
else:
model = torch.load(args.resume_snapshot, map_location=lambda storage, location: storage)
else:
model = SmPlusPlus(config)
model.static_question_embed.weight.data.copy_(QUESTION.vocab.vectors)
model.nonstatic_question_embed.weight.data.copy_(QUESTION.vocab.vectors)
model.static_answer_embed.weight.data.copy_(ANSWER.vocab.vectors)
model.nonstatic_answer_embed.weight.data.copy_(ANSWER.vocab.vectors)
if args.cuda:
model.cuda()
print("Shift model to GPU")
parameter = filter(lambda p: p.requires_grad, model.parameters())
# the SM model originally follows SGD but Adadelta is used here
optimizer = torch.optim.Adadelta(parameter, lr=args.lr, weight_decay=args.weight_decay)
criterion = nn.CrossEntropyLoss()
early_stop = False
best_dev_map = 0
iterations = 0
iters_not_improved = 0
epoch = 0
start = time.time()
header = ' Time Epoch Iteration Progress (%Epoch) Loss Dev/Loss Accuracy Dev/Accuracy'
dev_log_template = ' '.join('{:>6.0f},{:>5.0f},{:>9.0f},{:>5.0f}/{:<5.0f} {:>7.0f}%,{:>8.6f},{:8.6f},{:12.4f},{:12.4f}'.split(','))
log_template = ' '.join('{:>6.0f},{:>5.0f},{:>9.0f},{:>5.0f}/{:<5.0f} {:>7.0f}%,{:>8.6f},{},{:12.4f},{}'.split(','))
os.makedirs(args.save_path, exist_ok=True)
os.makedirs(os.path.join(args.save_path, args.dataset), exist_ok=True)
print(header)
index2label = np.array(LABEL.vocab.itos)
index2qid = np.array(QID.vocab.itos)
index2question = np.array(ANSWER.vocab.itos)
while True:
if early_stop:
print("Early Stopping. Epoch: {}, Best Dev Acc: {}".format(epoch, best_dev_map))
break
epoch += 1
train_iter.init_epoch()
n_correct, n_total = 0, 0
for batch_idx, batch in enumerate(train_iter):
iterations += 1
model.train(); optimizer.zero_grad()
scores = model(batch.question, batch.answer, batch.ext_feat)
n_correct += (torch.max(scores, 1)[1].view(batch.label.size()).data == batch.label.data).sum()
n_total += batch.batch_size
train_acc = 100. * n_correct / n_total
loss = criterion(scores, batch.label)
loss.backward()
optimizer.step()
# Evaluate performance on validation set
if iterations % args.dev_every == 1:
# switch model into evaluation mode
model.eval()
dev_iter.init_epoch()
n_dev_correct = 0
dev_losses = []
qids = []
predictions = []
labels = []
for dev_batch_idx, dev_batch in enumerate(dev_iter):
qid_array = index2qid[np.transpose(dev_batch.qid.cpu().data.numpy())]
true_label_array = index2label[np.transpose(dev_batch.label.cpu().data.numpy())]
scores = model(dev_batch.question, dev_batch.answer, dev_batch.ext_feat)
n_dev_correct += (torch.max(scores, 1)[1].view(dev_batch.label.size()).data == dev_batch.label.data).sum()
dev_loss = criterion(scores, dev_batch.label)
dev_losses.append(dev_loss.data[0])
index_label = np.transpose(torch.max(scores, 1)[1].view(dev_batch.label.size()).cpu().data.numpy())
label_array = index2label[index_label]
# get the relevance scores
score_array = scores[:, 2].cpu().data.numpy()
qids.extend(qid_array.tolist())
predictions.extend(score_array.tolist())
labels.extend(true_label_array.tolist())
dev_map, dev_mrr = get_map_mrr(qids, predictions, labels)
print(dev_log_template.format(time.time() - start,
epoch, iterations, 1 + batch_idx, len(train_iter),
100. * (1 + batch_idx) / len(train_iter), loss.data[0],
sum(dev_losses) / len(dev_losses), train_acc, dev_map))
# Update validation results
if dev_map > best_dev_map:
iters_not_improved = 0
best_dev_map = dev_map
snapshot_path = os.path.join(args.save_path, args.dataset, args.mode+'_best_model.pt')
torch.save(model, snapshot_path)
else:
iters_not_improved += 1
if iters_not_improved >= args.patience:
early_stop = True
break
if iterations % args.log_every == 1:
# print progress message
print(log_template.format(time.time() - start,
epoch, iterations, 1 + batch_idx, len(train_iter),
100. * (1 + batch_idx) / len(train_iter), loss.data[0], ' ' * 8,
n_correct / n_total * 100, ' ' * 12))