forked from Cyfrin/sc-exploits-minimized
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlemmas.k
330 lines (273 loc) · 16.6 KB
/
lemmas.k
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
requires "evm.md"
requires "foundry.md"
module FV-LEMMAS
imports BOOL
imports FOUNDRY
imports INFINITE-GAS
imports INT-SYMBOLIC
imports MAP-SYMBOLIC
imports SET-SYMBOLIC
syntax StepSort ::= Int
| Bool
| Bytes
| Set
// -------------------------
syntax KItem ::= runLemma ( StepSort )
| doneLemma( StepSort )
rule <k> runLemma(T) => doneLemma(T) ... </k>
// ---------------------------------------------
syntax Bool ::= #notEq ( KItem, KItem ) [function, no-evaluators]
// ----------------------------------------------------------------------------------------------------
//
// Bool
//
rule X ==Bool true => X [simplification]
rule true ==Bool X => X [simplification]
rule false ==Bool X => notBool X [simplification]
rule X ==Bool false => notBool X [simplification]
rule notBool notBool X => X [simplification]
rule notBool X ==Bool notBool Y => X ==Bool Y [simplification]
rule { notBool X #Equals notBool Y } => { X #Equals Y } [simplification]
rule bool2Word ( X ) => 1 requires X [simplification]
rule bool2Word ( X ) => 0 requires notBool X [simplification]
rule bool2Word ( X ) ==Int bool2Word ( Y ) => X ==Bool Y [simplification]
rule { bool2Word ( X ) #Equals bool2Word ( Y ) } => { X #Equals Y } [simplification]
//
// ML
//
rule { true #Equals X ==K Y } => { X #Equals Y } [simplification]
rule { true #Equals X:Int ==Int Y:Int } => { X #Equals Y } [simplification]
rule { false #Equals X ==K Y } => #Not ( { X #Equals Y } ) [simplification]
rule { false #Equals X:Int ==Int Y:Int } => #Not ( { X #Equals Y } ) [simplification]
// rule { true #Equals notBool X:Bool } => { false #Equals X } [simplification]
rule { false #Equals notBool X:Bool } => { true #Equals X } [simplification]
rule { X ==K Y #Equals true } => { X #Equals Y } [simplification]
rule { X:Int ==Int Y:Int #Equals true } => { X #Equals Y } [simplification]
rule { X ==K Y #Equals false } => #Not ( { X #Equals Y } ) [simplification]
rule { X:Int ==Int Y:Int #Equals false } => #Not ( { X #Equals Y } ) [simplification]
rule { notBool X:Bool #Equals true } => { false #Equals X } [simplification]
rule { notBool X:Bool #Equals false } => { true #Equals X } [simplification]
//
// Bitwise simplifications
//
// Concrete to the left
rule A &Int B => B &Int A [simplification(40), concrete(B), symbolic(A)]
rule A |Int B => B |Int A [simplification(40), concrete(B), symbolic(A)]
// Non-zeroedness of |Int
rule X |Int _ ==Int 0 => false
requires 0 <Int X
[simplification]
// Moving from &Int to modInt
rule 1 &Int X => X modInt 2 [simplification]
// &Int yields zero for notMax and operand in appropriate range
rule [bitwise-and-zero]:
X &Int Y => 0
requires 0 <=Int X
andBool pow256 -Int X ==Int 2 ^Int log2Int(pow256 -Int X)
andBool 0 <=Int Y andBool Y <Int 2 ^Int log2Int(pow256 -Int X)
[concrete(X), simplification, comm]
// Deconstruction of <<Int into #buf
rule X <<Int Y => #asWord ( #buf ( 32 -Int (Y /Int 8) , X ) +Bytes #buf ( Y /Int 8 , 0 ) )
requires 0 <=Int X andBool X <Int 2 ^Int (256 -Int Y)
andBool 0 <=Int Y andBool Y <=Int 256 andBool Y modInt 8 ==Int 0
[simplification, concrete(Y)]
rule Z <Int X &Int Y => false
requires #rangeUInt(256, X)
andBool #rangeUInt(256, Y)
andBool #rangeUInt(256, Z)
andBool ((Y <Int Z) orBool (X <Int Z))
[simplification]
rule X &Int Y <Int Z => true
requires #rangeUInt(256, X)
andBool #rangeUInt(256, Y)
andBool #rangeUInt(256, Z)
andBool ((Y <Int Z) orBool (X <Int Z))
[simplification]
rule X &Int #asWord ( _Y +Bytes Z ) => X &Int #asWord ( Z )
requires X <Int 2 ^Int (8 *Int lengthBytes(Z))
[concrete(X, Z), simplification]
rule X &Int #asWord ( _ +Bytes Z ) >>Int T => X &Int #asWord ( Z ) >>Int T
requires X <Int 2 ^Int (8 *Int lengthBytes(Z) -Int T)
[concrete(X, Z, T), simplification]
// |Int distributivity over #asWord and +Bytes, v1
rule A |Int #asWord ( BA1 +Bytes BA2 ) =>
#asWord ( BA1 +Bytes #buf ( lengthBytes(BA2), A |Int #asWord ( BA2 ) ) )
requires A <Int 2 ^Int (8 *Int lengthBytes(BA2))
[concrete(A), simplification]
// |Int distributivity over #asWord and +Bytes, v2
rule A |Int #asWord ( BA1 +Bytes BA2 ) =>
#asWord (
#buf ( lengthBytes(BA1), (A >>Int (8 *Int lengthBytes(BA2))) |Int #asWord ( BA1 ) )
+Bytes
#buf ( lengthBytes(BA2), (A modInt (2 ^Int (8 *Int lengthBytes(BA2)))) |Int #asWord ( BA2 ) )
)
requires 0 <=Int A
[simplification(40), concrete(A, BA1)]
//
// &Int
//
// Commutativity
rule A &Int B ==Int B &Int A => true [simplification, smt-lemma]
rule { A &Int B #Equals B &Int A } => #Top [simplification]
// Distributivity of &Int and |Int
rule A &Int (B |Int C) => (A &Int B) |Int (A &Int C)
[concrete(A, B), simplification]
rule A &Int (B |Int C) => (A &Int B) |Int (A &Int C)
[concrete(A, C), simplification]
// &Int on non-negative integers remains non-negative
rule 0 <=Int (X &Int Y) => true
requires 0 <=Int X
andBool 0 <=Int Y
[simplification, smt-lemma]
// Result of &Int cannot be greater than the operands
rule (X &Int Y) <=Int Z => true
requires 0 <=Int X
andBool 0 <=Int Y
andBool (X <=Int Z orBool Y <=Int Z)
[simplification]
// Anything negative is <Int than &Int
rule A <Int X &Int Y => true
requires 0 <=Int X andBool 0 <=Int Y
andBool A <Int 0
[simplification, concrete(A)]
// Deconstruction of (maxUInt &Int ...)
rule maxUInt8 &Int #asWord ( BA ) => #asWord ( #range(BA, 31, 1) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt16 &Int #asWord ( BA ) => #asWord ( #range(BA, 30, 2) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt24 &Int #asWord ( BA ) => #asWord ( #range(BA, 29, 3) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt32 &Int #asWord ( BA ) => #asWord ( #range(BA, 28, 4) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt40 &Int #asWord ( BA ) => #asWord ( #range(BA, 27, 5) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt48 &Int #asWord ( BA ) => #asWord ( #range(BA, 26, 6) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt56 &Int #asWord ( BA ) => #asWord ( #range(BA, 25, 7) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt64 &Int #asWord ( BA ) => #asWord ( #range(BA, 24, 8) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt72 &Int #asWord ( BA ) => #asWord ( #range(BA, 23, 9) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt80 &Int #asWord ( BA ) => #asWord ( #range(BA, 22, 10) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt88 &Int #asWord ( BA ) => #asWord ( #range(BA, 21, 11) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt96 &Int #asWord ( BA ) => #asWord ( #range(BA, 20, 12) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt104 &Int #asWord ( BA ) => #asWord ( #range(BA, 19, 13) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt112 &Int #asWord ( BA ) => #asWord ( #range(BA, 18, 14) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt120 &Int #asWord ( BA ) => #asWord ( #range(BA, 17, 15) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt128 &Int #asWord ( BA ) => #asWord ( #range(BA, 16, 16) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt136 &Int #asWord ( BA ) => #asWord ( #range(BA, 15, 17) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt144 &Int #asWord ( BA ) => #asWord ( #range(BA, 14, 18) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt152 &Int #asWord ( BA ) => #asWord ( #range(BA, 13, 19) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt160 &Int #asWord ( BA ) => #asWord ( #range(BA, 12, 20) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt168 &Int #asWord ( BA ) => #asWord ( #range(BA, 11, 21) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt176 &Int #asWord ( BA ) => #asWord ( #range(BA, 10, 22) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt184 &Int #asWord ( BA ) => #asWord ( #range(BA, 9, 23) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt192 &Int #asWord ( BA ) => #asWord ( #range(BA, 8, 24) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt200 &Int #asWord ( BA ) => #asWord ( #range(BA, 7, 25) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt208 &Int #asWord ( BA ) => #asWord ( #range(BA, 6, 26) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt216 &Int #asWord ( BA ) => #asWord ( #range(BA, 5, 27) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt224 &Int #asWord ( BA ) => #asWord ( #range(BA, 4, 28) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt232 &Int #asWord ( BA ) => #asWord ( #range(BA, 3, 29) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt240 &Int #asWord ( BA ) => #asWord ( #range(BA, 2, 30) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt248 &Int #asWord ( BA ) => #asWord ( #range(BA, 1, 31) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule maxUInt256 &Int #asWord ( BA ) => #asWord ( #range(BA, 0, 32) ) requires lengthBytes(BA) ==Int 32 [simplification]
// Deconstruction of (notMaxUInt &Int ...)
rule notMaxUInt8 &Int #asWord ( BA ) => #asWord ( #range(BA, 0, 31) +Bytes #buf ( 1, 0 ) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule notMaxUInt16 &Int #asWord ( BA ) => #asWord ( #range(BA, 0, 30) +Bytes #buf ( 2, 0 ) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule notMaxUInt32 &Int #asWord ( BA ) => #asWord ( #range(BA, 0, 28) +Bytes #buf ( 4, 0 ) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule notMaxUInt64 &Int #asWord ( BA ) => #asWord ( #range(BA, 0, 24) +Bytes #buf ( 8, 0 ) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule notMaxUInt96 &Int #asWord ( BA ) => #asWord ( #range(BA, 0, 20) +Bytes #buf ( 12, 0 ) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule notMaxUInt128 &Int #asWord ( BA ) => #asWord ( #range(BA, 0, 16) +Bytes #buf ( 16, 0 ) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule notMaxUInt160 &Int #asWord ( BA ) => #asWord ( #range(BA, 0, 12) +Bytes #buf ( 20, 0 ) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule notMaxUInt192 &Int #asWord ( BA ) => #asWord ( #range(BA, 0, 8) +Bytes #buf ( 24, 0 ) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule notMaxUInt208 &Int #asWord ( BA ) => #asWord ( #range(BA, 0, 6) +Bytes #buf ( 26, 0 ) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule notMaxUInt224 &Int #asWord ( BA ) => #asWord ( #range(BA, 0, 4) +Bytes #buf ( 28, 0 ) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule notMaxUInt240 &Int #asWord ( BA ) => #asWord ( #range(BA, 0, 2) +Bytes #buf ( 30, 0 ) ) requires lengthBytes(BA) ==Int 32 [simplification]
rule notMaxUInt248 &Int #asWord ( BA ) => #asWord ( #range(BA, 0, 1) +Bytes #buf ( 31, 0 ) ) requires lengthBytes(BA) ==Int 32 [simplification]
// Irrelevance of lower bits
rule notMaxUInt8 &Int (X |Int (maxUInt8 &Int _)) => notMaxUInt8 &Int X [simplification]
rule notMaxUInt16 &Int (X |Int (maxUInt16 &Int _)) => notMaxUInt16 &Int X [simplification]
rule notMaxUInt32 &Int (X |Int (maxUInt32 &Int _)) => notMaxUInt32 &Int X [simplification]
rule notMaxUInt64 &Int (X |Int (maxUInt64 &Int _)) => notMaxUInt64 &Int X [simplification]
rule notMaxUInt96 &Int (X |Int (maxUInt96 &Int _)) => notMaxUInt96 &Int X [simplification]
rule notMaxUInt128 &Int (X |Int (maxUInt128 &Int _)) => notMaxUInt128 &Int X [simplification]
rule notMaxUInt160 &Int (X |Int (maxUInt160 &Int _)) => notMaxUInt160 &Int X [simplification]
rule notMaxUInt192 &Int (X |Int (maxUInt192 &Int _)) => notMaxUInt192 &Int X [simplification]
rule notMaxUInt208 &Int (X |Int (maxUInt208 &Int _)) => notMaxUInt208 &Int X [simplification]
rule notMaxUInt224 &Int (X |Int (maxUInt224 &Int _)) => notMaxUInt224 &Int X [simplification]
rule notMaxUInt240 &Int (X |Int (maxUInt240 &Int _)) => notMaxUInt240 &Int X [simplification]
rule notMaxUInt248 &Int (X |Int (maxUInt248 &Int _)) => notMaxUInt248 &Int X [simplification]
// Prepend 4 bytes (used for function selectors)
rule A |Int #asWord ( BUF ) => #asWord ( #range ( #buf ( 32 , A ) , 0 , 4 ) +Bytes BUF )
requires notMaxUInt224 &Int A ==Int A
andBool lengthBytes ( BUF ) ==Int 28
[simplification, concrete(A)]
rule #buf ( 32, A |Int #asWord ( B:Bytes ) ) => #buf (32 -Int lengthBytes(B), A >>Int (8 *Int lengthBytes(B)) ) +Bytes B
requires 0 <=Int A andBool A <Int pow256
andBool lengthBytes(B) <=Int 32
andBool A modInt (2 ^Int lengthBytes(B)) ==Int 0
[simplification, concrete(A)]
//
// Arithmetic
//
rule chop ( X ) => X
requires 0 <=Int X andBool X <Int pow256
[simplification]
rule 0 <=Int A +Int B => true
requires 0 <=Int A andBool 0 <=Int B
[simplification]
//
// Sets
//
// Empty sets has no elements
rule _ in .Set => false [simplification]
rule { true #Equals _ in .Set} => #Bottom [simplification]
rule { false #Equals _ in .Set} => #Top [simplification]
rule S:Set |Set SetItem( X ) => S requires X in S [simplification]
// rule X in _:Set SetItem( Y ) => true requires X ==Int Y [simplification]
// rule X in S:Set SetItem( Y ) => X in S requires X =/=Int Y [simplification]
rule (S1:Set |Set SetItem( X )) |Set S2:Set => S1 |Set S2 requires X in S2 [simplification, concrete(X, S2)]
rule (S1:Set |Set SetItem( X )) |Set S2:Set => S1 |Set ( SetItem(X) S2 ) requires notBool X in S2 [simplification, concrete(X, S2)]
//
// #lookup
//
rule #lookup(.Map, _) => 0
[simplification]
rule #lookup((K:Int |-> _:Int) M:Map, X:Int) => #lookup(M, X)
requires X =/=Int K
[simplification]
rule #lookup(M:Map [K:Int <- _], X:Int) => #lookup(M, X)
requires X =/=Int K
[simplification]
rule M:Map [ K:Int <- V:Int ] => M
requires V ==Int #lookup(M, K)
andBool V =/=Int 0
[simplification]
//
// keccak assumptions: these assumptions are not sound in principle, but are
// required for verification - they should be collected at the end of execution
//
rule 0 <=Int keccak( _ ) => true [simplification, smt-lemma]
rule keccak( _ ) <Int pow256 => true [simplification, smt-lemma]
// keccak does not equal a concrete value
rule [keccak-eq-conc-false]: keccak(A) ==Int B => false [symbolic(A), concrete(B), simplification, comm]
rule [keccak-neq-conc-true]: keccak(A) =/=Int B => true [symbolic(A), concrete(B), simplification, comm]
rule [keccak-eq-conc-false-ml]: { keccak(_A) #Equals _B } => #Bottom [symbolic(_A), concrete(_B), simplification, comm]
// // WARNING: Extremely unsound: corollary of `keccak-eq-conc-false`
// rule [keccak-eq-conc-false-extended]:
// ( ( keccak ( X ) +Int A ) modInt pow256 ) ==Int Y => false
// requires 0 <Int A andBool A <Int pow256
// [simplification, symbolic(X), concrete(A, Y)]
// keccak is injective
rule [keccak-inj]: keccak(A) ==Int keccak(B) => A ==K B [simplification]
// keccak has no "fixpoint"
rule [keccak-no-fix-eq-false]: #buf(32, keccak(X)) ==K X => false [simplification]
rule [keccak-no-fix-neq-true]: #buf(32, keccak(X)) =/=K X => true [simplification]
// chop of negative keccak
rule chop (0 -Int keccak(BA)) => pow256 -Int keccak(BA)
[simplification]
// keccak cannot equal a number outside of its range
rule { X #Equals keccak (_) } => #Bottom
requires X <Int 0 orBool X >=Int pow256
[concrete(X), simplification]
// lemma that says that anything negative is smaller than a keccak
rule X <Int keccak ( _ ) => true
requires X <Int 0
[concrete(X), simplification]
// a keccak is smaller than anything greater than pow256 - 32
rule keccak ( _ ) <Int X => true
requires (pow256 -Int 32) <Int X
[concrete(X), simplification]
endmodule