forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGYBUnicodeDataUtils.py
642 lines (544 loc) · 24 KB
/
GYBUnicodeDataUtils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
# ===--- GYBUnicodeDataUtils.py ----------------------*- coding: utf-8 -*-===//
#
# This source file is part of the Swift.org open source project
#
# Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
# Licensed under Apache License v2.0 with Runtime Library Exception
#
# See https://swift.org/LICENSE.txt for license information
# See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
import codecs
import re
class UnicodeProperty(object):
"""Abstract base class for Unicode properties."""
def __init__(self):
raise NotImplementedError(
"UnicodeProperty.__init__ is not implemented.")
def get_default_value(self):
raise NotImplementedError(
"UnicodeProperty.get_default_value is not implemented.")
def get_value(self, cp):
raise NotImplementedError(
"UnicodeProperty.get_value is not implemented.")
def to_numeric_value(self, value):
raise NotImplementedError(
"UnicodeProperty.to_numeric_value is not implemented.")
def get_numeric_value(self, cp):
raise NotImplementedError(
"UnicodeProperty.get_numeric_value is not implemented.")
class GraphemeClusterBreakPropertyTable(UnicodeProperty):
"""Grapheme_Cluster_Break property."""
# An array of tuples (start_code_point, end_code_point, value).
property_value_ranges = []
property_values = [None for i in range(0, 0x110000)]
# Note: Numeric values (including the names) should be consistent with
# '_GraphemeClusterBreakPropertyValue' enum on the Swift side, and with
# 'GraphemeClusterBreakProperty' in the compiler C++ code. If there is a
# reason for either of those to differ, then this mapping can be overridden
# after an instance of this class is created.
numeric_value_table = {
'Other': 0,
'CR': 1,
'LF': 2,
'Control': 3,
'Extend': 4,
'Regional_Indicator': 5,
'Prepend': 6,
'SpacingMark': 7,
'L': 8,
'V': 9,
'T': 10,
'LV': 11,
'LVT': 12,
}
def __init__(self, grapheme_break_property_file_name):
# Build 'self.symbolic_values' -- an array that maps numeric property
# values to symbolic values.
self.symbolic_values = \
[None] * (max(self.numeric_value_table.values()) + 1)
for k, v in self.numeric_value_table.items():
self.symbolic_values[v] = k
# Load the data file.
with codecs.open(
grapheme_break_property_file_name,
encoding='utf-8',
errors='strict') as f:
for line in f:
# Strip comments.
line = re.sub('#.*', '', line)
# Single code point?
m = re.match('([0-9A-F]+) +; +([a-zA-Z]+) ', line)
if m:
code_point = int(m.group(1), 16)
value = m.group(2)
self.property_value_ranges += \
[(code_point, code_point, value)]
continue
# Range of code points?
m = re.match(
'([0-9A-F]+)..([0-9A-F]+) +; +([a-zA-Z_]+) ', line)
if m:
start_code_point = int(m.group(1), 16)
end_code_point = int(m.group(2), 16)
value = m.group(3)
self.property_value_ranges += \
[(start_code_point, end_code_point, value)]
# Prepare a flat lookup table for fast access.
for cp in range(0, 0x110000):
self.property_values[cp] = self.get_default_value()
for start_code_pt, end_code_pt, val in self.property_value_ranges:
for cp in range(start_code_pt, end_code_pt + 1):
self.property_values[cp] = val
def get_default_value(self):
return 'Other'
def get_value(self, cp):
return self.property_values[cp]
def to_numeric_value(self, value):
return self.numeric_value_table[value]
def get_numeric_value(self, cp):
return self.to_numeric_value(self.get_value(cp))
# BMP code points are 16-bit values. The code point value is split as
# follows:
#
# 8 bits 8 bits
# +-------------------------+-------------------------+
# | 15 14 13 12 11 10 9 8 | 7 6 5 4 3 2 1 0 |
# +-------------------------+-------------------------+
# first-level index data offset
#
# Supplementary code points (U+XXXX where XXXX > 0xffff) are 21-bit values.
# The code point value is split as follows:
#
# 5 bits 8 bits 8 bits
# +----------------+-------------------------+-------------------------+
# | 20 19 18 17 16 | 15 14 13 12 11 10 9 8 | 7 6 5 4 3 2 1 0 |
# +----------------+-------------------------+-------------------------+
# first-level second-level index data offset
# index
#
# The actual number of bits are just trie parameters. They affect the size of
# the lookup tables (and thus, lookup time), but do not change the overall
# structure of the trie.
#
# Here and below 'supp' stands for 'supplementary characters'.
#
# Property data for BMP code points is stored as a one-stage trie.
# A trie with one lookup table consists of two memory blocks:
#
# First-level lookup table
# +-----+-----+-----+-----+--...--+
# | * | * | * | * | |
# +--|--+--|--+--|--+--|--+--...--+
# | | | \ The references don't form
# | \____| \___, a systematic pattern
# | | |
# | | | Data storage
# +-V--------++-V--------++-V--------++---...---+
# | data || data || data || |
# +----------++----------++----------++---...---+
#
# In order to fetch data for a given code point, you need to:
# * load from the first-level lookup table using first-level index; this will
# give you the number of the data block that you should use.
# * load from the data block applying the data offset.
#
# Property data for supplementary code points is stored as a two-stage trie.
# A trie with two-stage lookup tables consists of three memory blocks. The
# following drawing explains how it is implemented:
#
# First-level lookup table
# +-----+-----+-----+-----+-----+--...--+
# | * | * | * | * | * | |
# +--|--+--|--+--|--+--|--+--|--+--...--+
# | | | | \ The references don't form
# ,__/ | \____| \___, a systematic pattern
# / | | |
# | | | | Second-level lookup table
# +-V--------++-V--------++-V--------++-V--------++---...---+
# | ******** || ******** || ******** || || |
# +-||||||||-++-||||||||-++-||||||||-++----------++---...---+
# \\\|//// ||||||VV |VVV|V|V
# \\|/// |||||| / | |
# \|// |||||| / | |
# |/ ||||| \__|___. \ \ The references don't form
# | |||| \___|__. \ | \ a systematic pattern
# | ||| \____| \ \__| \
# | || \_____|__. \___|___\ ...___.
# | | \______| \____| \___, | Data storage
# +-V-----++-V-----++-V-----++-V-----++-V-----++-V-----++---...---+
# | data || data || data || data || || || |
# +-------++-------++-------++-------++-------++-------++---...---+
#
# In order to fetch data for a given code point, you need to:
# * load from the first-level lookup table using first-level index; this will
# give you the number of the second-level lookup table that you should use.
# * load from the chosen second-level lookup table using the second-level
# index, which will give you the number of the data block that you should
# use.
# * load from the data block applying the data offset.
#
# First- and second-level lookup tables in the general case contain 16-bit
# words; that will be sufficient to store a trie that does not compress at all.
# But in many cases, after trie compression there will be fewer than 256
# unique second-level lookup tables and/or data storage blocks, which allows
# one to use 8-bit words in lookup tables.
#
# The bitwidth of data depends on the application of the trie.
#
# The supp tables contain entries for BMP code units to simplify trie
# implementation, but those BMP entries are filled with the default value, so
# they compress well.
class UnicodeTrieGenerator(object):
# Note: if you change any of these parameters, don't forget to update the
# ASCII art above.
bmp_first_level_index_bits = 8
supp_first_level_index_bits = 5
supp_second_level_index_bits = 8
def get_bmp_first_level_index(self, cp):
return cp >> self.bmp_data_offset_bits
def get_bmp_data_offset(self, cp):
return cp & ((1 << self.bmp_data_offset_bits) - 1)
def get_supp_first_level_index(self, cp):
return cp >> \
(self.supp_second_level_index_bits + self.supp_data_offset_bits)
def get_supp_second_level_index(self, cp):
return (cp >> self.supp_data_offset_bits) & \
((1 << self.supp_second_level_index_bits) - 1)
def get_supp_data_offset(self, cp):
return cp & ((1 << self.supp_data_offset_bits) - 1)
def __init__(self):
"""Create a trie generator with default parameters."""
pass
def create_tables(self):
"""Compute derived parameter values and create internal data
structures.
Don't change parameter values after calling this method.
"""
self.bmp_data_offset_bits = 16 - self.bmp_first_level_index_bits
self.supp_data_offset_bits = \
21 - self.supp_first_level_index_bits - \
self.supp_second_level_index_bits
# The maximum value of the first level index for supp tables. It is
# not equal to ((1 << supp_first_level_index_bits) - 1), because
# maximum Unicode code point value is not 2^21-1 (0x1fffff), it is
# 0x10ffff.
self.supp_first_level_index_max = \
0x10ffff >> \
(self.supp_second_level_index_bits + self.supp_data_offset_bits)
# A mapping from BMP first-level index to BMP data block index.
self.bmp_lookup = \
[i for i in range(0, 1 << self.bmp_first_level_index_bits)]
# An array of BMP data blocks.
self.bmp_data = [
[-1 for i in range(0, 1 << self.bmp_data_offset_bits)]
for i in range(0, 1 << self.bmp_first_level_index_bits)
]
# A mapping from supp first-level index to an index of the second-level
# lookup table.
self.supp_lookup1 = \
[i for i in range(0, self.supp_first_level_index_max + 1)]
# An array of second-level lookup tables. Each second-level lookup
# table is a mapping from a supp second-level index to supp data block
# index.
self.supp_lookup2 = [
[j for j in range(i << self.supp_second_level_index_bits,
(i + 1) << self.supp_second_level_index_bits)]
for i in range(0, self.supp_first_level_index_max + 1)
]
# An array of supp data blocks.
self.supp_data = [
[-1 for i in range(0, 1 << self.supp_data_offset_bits)]
for i in range(0, (self.supp_first_level_index_max + 1) *
(1 << self.supp_second_level_index_bits))
]
def splat(self, value):
for i in range(0, len(self.bmp_data)):
for j in range(0, len(self.bmp_data[i])):
self.bmp_data[i][j] = value
for i in range(0, len(self.supp_data)):
for j in range(0, len(self.supp_data[i])):
self.supp_data[i][j] = value
def set_value(self, cp, value):
if cp <= 0xffff:
data_block_index = self.bmp_lookup[
self.get_bmp_first_level_index(cp)]
self.bmp_data[data_block_index][
self.get_bmp_data_offset(cp)] = value
else:
second_lookup_index = self.supp_lookup1[
self.get_supp_first_level_index(cp)]
data_block_index = self.supp_lookup2[second_lookup_index][
self.get_supp_second_level_index(cp)]
self.supp_data[data_block_index][
self.get_supp_data_offset(cp)] = value
def get_value(self, cp):
if cp <= 0xffff:
data_block_index = self.bmp_lookup[
self.get_bmp_first_level_index(cp)]
return self.bmp_data[data_block_index][
self.get_bmp_data_offset(cp)]
else:
second_lookup_index = self.supp_lookup1[
self.get_supp_first_level_index(cp)]
data_block_index = self.supp_lookup2[second_lookup_index][
self.get_supp_second_level_index(cp)]
return self.supp_data[data_block_index][
self.get_supp_data_offset(cp)]
def fill_from_unicode_property(self, unicode_property):
self.splat(unicode_property.get_default_value())
for cp in range(0, 0x110000):
self.set_value(cp, unicode_property.get_value(cp))
def verify(self, unicode_property):
for cp in range(0, 0x110000):
expected_value = unicode_property.get_value(cp)
actual_value = self.get_value(cp)
assert expected_value == actual_value
def freeze(self):
"""Compress internal trie representation.
Don't mutate the trie after calling this method.
"""
def remap_indexes(indexes, old_idx, new_idx):
def map_index(idx):
if idx == old_idx:
return new_idx
elif idx > old_idx:
return idx - 1
else:
return idx
return list(map(map_index, indexes))
# If self.bmp_data contains identical data blocks, keep the first one,
# remove duplicates and change the indexes in self.bmp_lookup to point
# to the first one.
i = 0
while i < len(self.bmp_data):
j = i + 1
while j < len(self.bmp_data):
if self.bmp_data[i] == self.bmp_data[j]:
self.bmp_data.pop(j)
self.bmp_lookup = \
remap_indexes(self.bmp_lookup, old_idx=j, new_idx=i)
else:
j += 1
i += 1
# For supp tables, perform bottom-up deduplication: first, deduplicate
# data blocks. The algorithm is the same as above, but operates on
# self.supp_data/supp_lookup2.
i = 0
while i < len(self.supp_data):
j = i + 1
while j < len(self.supp_data):
if self.supp_data[i] == self.supp_data[j]:
self.supp_data.pop(j)
for k in range(0, len(self.supp_lookup2)):
self.supp_lookup2[k] = \
remap_indexes(self.supp_lookup2[k],
old_idx=j, new_idx=i)
else:
j += 1
i += 1
# Next, deduplicate second-level lookup tables.
# Same as above, but for supp_lookup1/supp_lookup2.
i = 0
while i < len(self.supp_lookup2):
j = i + 1
while j < len(self.supp_lookup2):
if self.supp_lookup2[i] == self.supp_lookup2[j]:
self.supp_lookup2.pop(j)
self.supp_lookup1 = \
remap_indexes(self.supp_lookup1, old_idx=j, new_idx=i)
else:
j += 1
i += 1
def _int_to_le_bytes(self, data, width):
if width == 1:
assert data & ~0xff == 0
return [data]
if width == 2:
assert data & ~0xffff == 0
return [data & 0xff, data & 0xff00]
assert False
def _int_list_to_le_bytes(self, ints, width):
return [
byte
for elt in ints
for byte in self._int_to_le_bytes(elt, width)]
def serialize(self, unicode_property):
self.bmp_lookup_bytes_per_entry = 1 if len(self.bmp_data) < 256 else 2
self.bmp_data_bytes_per_entry = 1
self.supp_lookup1_bytes_per_entry = 1 if len(self.supp_lookup2) < 256 \
else 2
self.supp_lookup2_bytes_per_entry = 1 if len(self.supp_data) < 256 \
else 2
self.supp_data_bytes_per_entry = 1
bmp_lookup_words = list(self.bmp_lookup)
bmp_data_words = [
unicode_property.to_numeric_value(elt)
for block in self.bmp_data
for elt in block]
supp_lookup1_words = list(self.supp_lookup1)
supp_lookup2_words = [
elt for block in self.supp_lookup2 for elt in block]
supp_data_words = [
unicode_property.to_numeric_value(elt)
for block in self.supp_data
for elt in block]
bmp_lookup_bytes = self._int_list_to_le_bytes(
bmp_lookup_words, self.bmp_lookup_bytes_per_entry)
bmp_data_bytes = self._int_list_to_le_bytes(
bmp_data_words, self.bmp_data_bytes_per_entry)
supp_lookup1_bytes = self._int_list_to_le_bytes(
supp_lookup1_words, self.supp_lookup1_bytes_per_entry)
supp_lookup2_bytes = self._int_list_to_le_bytes(
supp_lookup2_words, self.supp_lookup2_bytes_per_entry)
supp_data_bytes = self._int_list_to_le_bytes(
supp_data_words, self.supp_data_bytes_per_entry)
self.trie_bytes = []
self.bmp_lookup_bytes_offset = 0
self.trie_bytes += bmp_lookup_bytes
self.bmp_data_bytes_offset = len(self.trie_bytes)
self.trie_bytes += bmp_data_bytes
self.supp_lookup1_bytes_offset = len(self.trie_bytes)
self.trie_bytes += supp_lookup1_bytes
self.supp_lookup2_bytes_offset = len(self.trie_bytes)
self.trie_bytes += supp_lookup2_bytes
self.supp_data_bytes_offset = len(self.trie_bytes)
self.trie_bytes += supp_data_bytes
def get_extended_grapheme_cluster_rules_matrix(grapheme_cluster_break_table):
any_value = \
grapheme_cluster_break_table.symbolic_values
# Rules to determine extended grapheme cluster boundaries, as defined in
# 'Grapheme Break Chart',
# http://www.unicode.org/Public/6.3.0/ucd/auxiliary/GraphemeBreakTest.html,
# Unicode 6.3.0.
#
# The Unicode 7.0.0 draft does not change these rules.
#
# As in the referenced document, the rules are specified in order of
# decreasing priority.
rules = [
(['CR'], 'no_boundary', ['LF']),
(['Control', 'CR', 'LF'], 'boundary', any_value),
(any_value, 'boundary', ['Control', 'CR', 'LF']),
(['L'], 'no_boundary', ['L', 'V', 'LV', 'LVT']),
(['LV', 'V'], 'no_boundary', ['V', 'T']),
(['LVT', 'T'], 'no_boundary', ['T']),
(['Regional_Indicator'], 'no_boundary', ['Regional_Indicator']),
(any_value, 'no_boundary', ['Extend']),
(any_value, 'no_boundary', ['SpacingMark']),
(['Prepend'], 'no_boundary', any_value),
(any_value, 'boundary', any_value),
]
# Expand the rules into a matrix.
rules_matrix = {}
for first in any_value:
rules_matrix[first] = \
dict.fromkeys(any_value, None)
# Iterate over rules in the order of increasing priority.
for first_list, action, second_list in reversed(rules):
for first in first_list:
for second in second_list:
rules_matrix[first][second] = action
# Make sure we can pack one row of the matrix into a 'uint16_t'.
assert len(any_value) <= 16
result = []
for first in any_value:
# Retrieve a row that corresponds to this first code point.
row = rules_matrix[first]
# Change strings into bits.
bits = [row[second] == 'no_boundary' for second in any_value]
# Pack bits into an integer.
packed = sum([bits[i] * pow(2, i) for i in range(0, len(bits))])
result += [packed]
return result
def get_grapheme_cluster_break_tests_as_utf8(grapheme_break_test_file_name):
def _convert_line(line):
# Strip comments.
line = re.sub('#.*', '', line).strip()
if line == "":
return None
test = ""
curr_bytes = 0
boundaries = []
# Match a list of code points.
for token in line.split(" "):
if token == u"÷":
boundaries += [curr_bytes]
elif token == u"×":
pass
else:
code_point = int(token, 16)
# Tests from Unicode spec have isolated surrogates in them.
# Our segmentation algorithm works on UTF-8 sequences, so
# encoding a surrogate would produce an invalid code unit
# sequence. Instead of trying to emulate the maximal subpart
# algorithm for inserting U+FFFD in Python, we just replace
# every isolated surrogate with U+200B, which also has
# Grapheme_Cluster_Break equal to 'Control' and test
# separately that we handle ill-formed UTF-8 sequences.
if code_point >= 0xd800 and code_point <= 0xdfff:
code_point = 0x200b
code_point = (b'\U%(cp)08x' % {b'cp': code_point}).decode(
'unicode_escape', 'strict')
as_utf8_bytes = bytearray(code_point.encode('utf8', 'strict'))
as_utf8_escaped = ''.join(
['\\x%(byte)02x' % {'byte': byte}
for byte in as_utf8_bytes])
test += as_utf8_escaped
curr_bytes += len(as_utf8_bytes)
return (test, boundaries)
# Self-test.
assert (_convert_line(u'÷ 0903 × 0308 ÷ AC01 ÷ # abc') ==
('\\xe0\\xa4\\x83\\xcc\\x88\\xea\\xb0\\x81', [0, 5, 8]))
assert _convert_line(u'÷ D800 ÷ # abc') == ('\\xe2\\x80\\x8b', [0, 3])
result = []
with codecs.open(
grapheme_break_test_file_name,
encoding='utf-8',
errors='strict') as f:
for line in f:
test = _convert_line(line)
if test:
result += [test]
return result
def get_grapheme_cluster_break_tests_as_unicode_scalars(
grapheme_break_test_file_name):
def _convert_line(line):
# Strip comments.
line = re.sub('#.*', '', line).strip()
if line == "":
return None
test = []
curr_code_points = 0
boundaries = []
# Match a list of code points.
for token in line.split(" "):
if token == "÷":
boundaries += [curr_code_points]
elif token == "×":
pass
else:
code_point = int(token, 16)
# Tests from Unicode spec have isolated surrogates in them. Our
# segmentation algorithm works on UTF-16 sequences, so encoding
# a surrogate would produce an invalid code unit sequence.
# Instead of trying to emulate the maximal subpart algorithm
# for inserting U+FFFD in Python, we just replace every
# isolated surrogate with U+200B, which also has
# Grapheme_Cluster_Break equal to 'Control' and test separately
# that we handle ill-formed UTF-8 sequences.
if code_point >= 0xd800 and code_point <= 0xdfff:
code_point = 0x200b
test += [code_point]
curr_code_points += 1
return (test, boundaries)
# Self-test.
assert (_convert_line('÷ 0903 × 0308 ÷ AC01 ÷ # abc') ==
([0x0903, 0x0308, 0xac01], [0, 2, 3]))
assert _convert_line('÷ D800 ÷ # abc') == ([0x200b], [0, 1])
result = []
with open(grapheme_break_test_file_name, 'rb') as f:
for line in f:
test = _convert_line(line)
if test:
result += [test]
return result