Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix acceleration reading from IMU #10

Merged
merged 3 commits into from
Nov 5, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 10 additions & 10 deletions src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -61,6 +61,8 @@ pub struct Quadrotor {
pub position: Vector3<f32>,
/// Current velocity of the quadrotor
pub velocity: Vector3<f32>,
/// Current acceleration of the quadrotor
pub acceleration: Vector3<f32>,
/// Current orientation of the quadrotor
pub orientation: UnitQuaternion<f32>,
/// Current angular velocity of the quadrotor
Expand Down Expand Up @@ -117,6 +119,7 @@ impl Quadrotor {
Ok(Self {
position: Vector3::zeros(),
velocity: Vector3::zeros(),
acceleration: Vector3::zeros(),
orientation: UnitQuaternion::identity(),
angular_velocity: Vector3::zeros(),
mass,
Expand Down Expand Up @@ -151,8 +154,8 @@ impl Quadrotor {
let gravity_force = Vector3::new(0.0, 0.0, -self.mass * self.gravity);
let drag_force = -self.drag_coefficient * self.velocity.norm() * self.velocity;
let thrust_world = self.orientation * Vector3::new(0.0, 0.0, control_thrust);
let acceleration = (thrust_world + gravity_force + drag_force) / self.mass;
self.velocity += acceleration * self.time_step;
self.acceleration = (thrust_world + gravity_force + drag_force) / self.mass;
self.velocity += self.acceleration * self.time_step;
self.position += self.velocity * self.time_step;
let inertia_angular_velocity = self.inertia_matrix * self.angular_velocity;
let gyroscopic_torque = self.angular_velocity.cross(&inertia_angular_velocity);
Expand Down Expand Up @@ -271,7 +274,7 @@ impl Quadrotor {
/// use nalgebra::UnitQuaternion;
/// let (time_step, mass, gravity, drag_coefficient) = (0.01, 1.3, 9.81, 0.01);
/// let inertia_matrix = [0.0347563, 0.0, 0.0, 0.0, 0.0458929, 0.0, 0.0, 0.0, 0.0977];
/// let quadrotor = Quadrotor::new(time_step, mass, gravity, drag_coefficient, inertia_matrix).unwrap();
/// let mut quadrotor = Quadrotor::new(time_step, mass, gravity, drag_coefficient, inertia_matrix).unwrap();
/// let state = [
/// 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
/// ];
Expand All @@ -280,7 +283,7 @@ impl Quadrotor {
/// let derivative = quadrotor.state_derivative(&state, control_thrust, &control_torque);
/// ```
pub fn state_derivative(
&self,
&mut self,
state: &[f32],
control_thrust: f32,
control_torque: &Vector3<f32>,
Expand All @@ -298,15 +301,15 @@ impl Quadrotor {
let gravity_force = Vector3::new(0.0, 0.0, -self.mass * self.gravity);
let drag_force = -self.drag_coefficient * velocity.norm() * velocity;
let thrust_world = orientation * Vector3::new(0.0, 0.0, control_thrust);
let acceleration = (thrust_world + gravity_force + drag_force) / self.mass;
self.acceleration = (thrust_world + gravity_force + drag_force) / self.mass;

let inertia_angular_velocity = self.inertia_matrix * angular_velocity;
let gyroscopic_torque = angular_velocity.cross(&inertia_angular_velocity);
let angular_acceleration = self.inertia_matrix_inv * (control_torque - gyroscopic_torque);

let mut derivative = [0.0; 13];
derivative[0..3].copy_from_slice(velocity.as_slice());
derivative[3..6].copy_from_slice(acceleration.as_slice());
derivative[3..6].copy_from_slice(self.acceleration.as_slice());
derivative[6..10].copy_from_slice(q_dot.coords.as_slice());
derivative[10..13].copy_from_slice(angular_acceleration.as_slice());
derivative
Expand All @@ -327,10 +330,7 @@ impl Quadrotor {
/// let (true_acceleration, true_angular_velocity) = quadrotor.read_imu().unwrap();
/// ```
pub fn read_imu(&self) -> Result<(Vector3<f32>, Vector3<f32>), SimulationError> {
let gravity_world = Vector3::new(0.0, 0.0, self.gravity);
let true_acceleration =
self.orientation.inverse() * (self.velocity / self.time_step - gravity_world);
Ok((true_acceleration, self.angular_velocity))
Ok((self.acceleration, self.angular_velocity))
}
}
/// Represents an Inertial Measurement Unit (IMU) with bias and noise characteristics
Expand Down