.. module:: ott.tools
.. currentmodule:: ott.tools
The :mod:`~ott.tools` package contains high level functions that build on outputs produced by lower-level components in the toolbox, such as :mod:`~ott.solvers`.
In particular, we provide user-friendly APIs to unregularized OT quantities, such as the :term:`Wasserstein distance` for two point clouds of the same size. We also provide functions to pad efficiently point clouds when doing large scale OT between them in parallel, implementations of the Sinkhorn divergence :cite:`genevay:18,sejourne:19`, sliced Wasserstein distances :cite:`rabin:12`, differentiable approximations to ranks and quantile functions :cite:`cuturi:19`, and various tools to study Gaussians with the 2-:term:`Wasserstein distance` :cite:`gelbrich:90,delon:20`.
.. autosummary:: :toctree: _autosummary unreg.hungarian unreg.HungarianOutput unreg.wassdis_p
.. autosummary:: :toctree: _autosummary segment_sinkhorn.segment_sinkhorn
.. autosummary:: :toctree: _autosummary sinkhorn_divergence.sinkdiv sinkhorn_divergence.sinkhorn_divergence sinkhorn_divergence.SinkhornDivergenceOutput sinkhorn_divergence.segment_sinkhorn_divergence
.. autosummary:: :toctree: _autosummary sliced.random_proj_sphere sliced.sliced_wasserstein
.. autosummary:: :toctree: _autosummary progot.ProgOT progot.ProgOTOutput progot.get_alpha_schedule progot.get_epsilon_schedule
.. autosummary:: :toctree: _autosummary soft_sort.multivariate_cdf_quantile_maps soft_sort.quantile soft_sort.quantile_normalization soft_sort.quantize soft_sort.ranks soft_sort.sort soft_sort.sort_with soft_sort.topk_mask
.. autosummary:: :toctree: _autosummary k_means.k_means k_means.KMeansOutput
.. autosummary:: :toctree: _autosummary plot.Plot
.. currentmodule:: ott.tools.gaussian_mixture
.. automodule:: ott.tools.gaussian_mixture
This package implements various tools to manipulate Gaussian mixtures with a slightly modified Wasserstein geometry: here a Gaussian mixture is no longer strictly regarded as a density \mathbb{R}^d, but instead as a point cloud in the space of Gaussians in \mathbb{R}^d. This viewpoint provides a new approach to compare, and fit Gaussian mixtures, as described for instance in :cite:`delon:20` and references therein.
.. autosummary:: :toctree: _autosummary gaussian.Gaussian gaussian_mixture.GaussianMixture gaussian_mixture_pair.GaussianMixturePair fit_gmm.initialize fit_gmm.fit_model_em fit_gmm_pair.get_fit_model_em_fn