-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathmodels.py
179 lines (157 loc) · 5.67 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
"""
Definition of the DVDnet model
Copyright (C) 2018, Matias Tassano <matias.tassano@parisdescartes.fr>
This program is free software: you can use, modify and/or
redistribute it under the terms of the GNU General Public
License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later
version. You should have received a copy of this license along
this program. If not, see <http://www.gnu.org/licenses/>.
"""
import torch
import torch.nn as nn
class DVDnet_spatial(nn.Module):
""" Definition of the spatial denoiser of DVDnet.
Inputs of forward():
x: array of input frames of dim [N, C, H, W], (C=3 RGB)
noise_map: array with noise map of dim [N, C, H, W], C (noise map for each channel)
"""
def __init__(self):
super(DVDnet_spatial, self).__init__()
self.down_kernel_size = (2, 2)
self.down_stride = 2
self.kernel_size = 3
self.padding = 1
# RGB image
self.num_input_channels = 6
self.middle_features = 96
self.num_conv_layers = 12
self.down_input_channels = 12
self.downsampled_channels = 15
self.output_features = 12
self.downscale = nn.Unfold(kernel_size=self.down_kernel_size, stride=self.down_stride)
layers = []
layers.append(nn.Conv2d(in_channels=self.downsampled_channels,\
out_channels=self.middle_features,\
kernel_size=self.kernel_size,\
padding=self.padding,\
bias=False))
layers.append(nn.ReLU(inplace=True))
for _ in range(self.num_conv_layers-2):
layers.append(nn.Conv2d(in_channels=self.middle_features,\
out_channels=self.middle_features,\
kernel_size=self.kernel_size,\
padding=self.padding,\
bias=False))
layers.append(nn.BatchNorm2d(self.middle_features))
layers.append(nn.ReLU(inplace=True))
layers.append(nn.Conv2d(in_channels=self.middle_features,\
out_channels=self.output_features,\
kernel_size=self.kernel_size,\
padding=self.padding,\
bias=False))
self.conv_relu_bn = nn.Sequential(*layers)
self.pixelshuffle = nn.PixelShuffle(2)
# Init weights
self.reset_params()
@staticmethod
def weight_init(m):
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, nonlinearity='relu')
def reset_params(self):
for _, m in enumerate(self.modules()):
self.weight_init(m)
def forward(self, x, noise_map):
N, _, H, W = x.size() # compute size of input
# Downscale input using nn.Unfold
x1 = self.downscale(x)
x1 = x1.reshape(N, self.down_input_channels, H//2, W//2)
# Concat downscaled input with downsampled noise map
x1 = torch.cat((noise_map[:, :, ::2, ::2], x1), 1)
# Conv + ReLU + BN
x1 = self.conv_relu_bn(x1)
# Upscale back to original resolution
x1 = self.pixelshuffle(x1)
# Residual learning
x = x - x1
return x
class DVDnet_temporal(nn.Module):
""" Definition of the temporal denoiser of DVDnet.
Inputs of constructor:
num_input_frames: int. number of frames to denoise
Inputs of forward():
x: array of input frames of dim [num_input_frames, C, H, W], (C=3 RGB)
noise_map: array with noise map of dim [1, C, H, W], C (noise map for each channel)
"""
def __init__(self, num_input_frames):
super(DVDnet_temporal, self).__init__()
self.num_input_frames = num_input_frames
self.num_input_channels = int((num_input_frames+1)*3) # num_input_frames RGB frames + noisemap
self.num_feature_maps = 96
self.num_conv_layers = 4
self.output_features = 12
self.down_kernel_size = 5
self.down_stride = 2
self.down_padding = 2
self.conv1x1_kernel_size = 1
self.conv1x1_stride = 1
self.conv1x1_padding = 0
self.kernel_size = 3
self.stride = 1
self.padding = 1
self.down_conv = nn.Sequential(nn.Conv2d(in_channels=self.num_input_channels,\
out_channels=self.num_feature_maps,\
kernel_size=self.down_kernel_size,\
padding=self.down_padding,\
stride=self.down_stride,\
bias=False),\
nn.BatchNorm2d(self.num_feature_maps),\
nn.ReLU(inplace=True))
self.conv1x1 = nn.Conv2d(in_channels=self.num_feature_maps,\
out_channels=self.num_feature_maps,\
kernel_size=self.conv1x1_kernel_size,\
padding=self.conv1x1_padding,\
stride=self.conv1x1_stride,\
bias=False)
layers = []
for _ in range(self.num_conv_layers):
layers.append(nn.Conv2d(in_channels=self.num_feature_maps,\
out_channels=self.num_feature_maps,\
kernel_size=self.kernel_size,\
padding=self.padding,\
bias=False))
layers.append(nn.BatchNorm2d(self.num_feature_maps))
layers.append(nn.ReLU(inplace=True))
self.block_conv = nn.Sequential(*layers)
self.out_conv = nn.Sequential(nn.Conv2d(in_channels=self.num_feature_maps,\
out_channels=self.num_feature_maps,\
kernel_size=self.kernel_size,\
padding=self.padding,\
stride=self.stride,\
bias=False),\
nn.BatchNorm2d(self.num_feature_maps),\
nn.ReLU(inplace=True),\
nn.Conv2d(in_channels=self.num_feature_maps,\
out_channels=self.output_features,\
kernel_size=self.kernel_size,\
padding=self.padding,\
stride=self.stride,\
bias=False))
self.pixelshuffle = nn.PixelShuffle(2)
# Init weights
self.reset_params()
@staticmethod
def weight_init(m):
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, nonlinearity='relu')
def reset_params(self):
for _, m in enumerate(self.modules()):
self.weight_init(m)
def forward(self, x, noise_map):
x1 = torch.cat((noise_map, x), 1)
x1 = self.down_conv(x1)
x2 = self.conv1x1(x1)
x1 = self.block_conv(x1)
x1 = self.out_conv(x1+x2)
x1 = self.pixelshuffle(x1)
return x1