forked from henghuiding/Vision-Language-Transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
executor.py
238 lines (192 loc) · 8.79 KB
/
executor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import json
import os
from abc import abstractmethod
from datetime import datetime
import keras
import keras.backend as K
from keras.callbacks import ModelCheckpoint, TensorBoard
from keras.layers import Input, Lambda
from keras.models import Model
from keras.optimizers import Adam
from callbacks.common import RedirectModel
from callbacks.eval import Evaluate
from callbacks.learning_scheduler import LearningRateScheduler, lr_step_decay
from loader.loader import Generator
from model.vlt_model import yolo_body, yolo_loss
class Executor(object):
def __init__(self, config, GPUS=1, debug=False):
# settings
self.config = config
self.debug = debug
self.GPUS = GPUS
self.input_shape = (self.config.input_size, self.config.input_size, 3) # multiple of 32, hw
self.word_len = self.config.word_len
self.embed_dim = self.config.embed_dim
self.seg_out_stride = self.config.seg_out_stride
self.start_epoch = self.config.start_epoch
self.n_freeze = 185 + 12
# data init
self.dataset = {}
self.dataset_len = {}
self.load_data()
# create model
self.yolo_model, self.yolo_body, self.yolo_body_single = self.create_model()
# call_back_init
self.callbacks = self.build_callbacks()
def create_model(self):
print('Creating model...')
K.clear_session() # get a new session
image_input = Input(shape=(self.input_shape))
q_input = Input(shape=[self.word_len, self.embed_dim], name='q_input')
h, w, _ = self.input_shape
seg_gt = Input(shape=(h//self.seg_out_stride, w//self.seg_out_stride, 1))
# mask_size = self.config.input_size // self.config.seg_out_stride
model_body = yolo_body(image_input, q_input, self.config)
print('Loading model...')
self.load_model(model_body)
if self.GPUS > 1:
print("Using {} GPUs".format(self.GPUS))
model_body_para = keras.utils.multi_gpu_model(model_body, gpus=self.GPUS)
else:
print("Using SINGLE GPU Only")
model_body_para = model_body
model_loss = Lambda(yolo_loss,
output_shape=(1,),
name='yolo_loss',
arguments={'batch_size': self.config.batch_size})(
[model_body_para.output, seg_gt])
model = Model([model_body_para.input[0],
model_body_para.input[1],
seg_gt], model_loss)
print('Model created.')
return model, model_body_para, model_body
def load_dataset(self, split):
with open(self.config[split], 'rb') as f:
data_lines = json.load(f)
if self.debug:
data_lines = data_lines[:50]
set_num = len(data_lines)
print('Dataset Loaded: %s, Len: %d' % (split, set_num))
return data_lines, set_num
@abstractmethod
def build_callbacks():
pass
@abstractmethod
def load_model():
pass
@abstractmethod
def load_data():
pass
class Trainer(Executor):
def __init__(self, config, log_path, verbose=False, **kwargs):
self.load_path = config.pretrained_weights
self.log_path = log_path
self.verbose = verbose
self.model_path = os.path.join(self.log_path, 'models')
if not os.path.exists(self.model_path):
os.makedirs(self.model_path)
json.dump(config, open(os.path.join(self.model_path, 'config.json'), 'w'))
timestr = datetime.now().strftime('%m_%d_%H_%M_%S')
self.tb_path = os.path.join(self.log_path, timestr)
if not os.path.exists(self.tb_path):
os.makedirs(self.tb_path)
json.dump(config, open(os.path.join(self.tb_path, 'config.json'), 'w'))
super(Trainer, self).__init__(config, **kwargs)
def load_model(self, model_body):
path = self.config.pretrained_weights
model_body.load_weights(path, by_name=True, skip_mismatch=True)
print('Loading weights from {}.'.format(path))
if self.config.free_body in [1, 2]:
# Freeze darknet53 body or freeze all but 3 output layers.
num = (self.n_freeze, len(model_body.layers) - 3)[self.config.free_body - 1]
for i in range(num):
model_body.layers[i].trainable = False
print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))
def load_data(self):
self.dataset['val'], self.dataset_len['val'] = self.load_dataset('evaluate_set')
self.dataset['train'], self.dataset_len['train'] = self.load_dataset('train_set')
self.train_generator = Generator(self.dataset['train'], self.config)
# self.train_generator.__getitem__(1)
def build_callbacks(self):
call_backs = []
logging = TensorBoard(log_dir=self.tb_path)
call_backs.append(logging)
model_evaluate = Evaluate(self.dataset['val'], self.config, tensorboard=logging)
call_backs.append(RedirectModel(model_evaluate, self.yolo_body))
checkpoint_map = ModelCheckpoint(self.log_path + '/models/best_map.h5',
verbose=1,
save_best_only=True,
save_weights_only=True,
monitor="seg_iou",
mode='max')
call_backs.append(RedirectModel(checkpoint_map, self.yolo_body_single))
lr_schedue = LearningRateScheduler(lr_step_decay(self.config.lr, self.config.steps),
logging, verbose=1,
init_epoch=self.config.start_epoch)
call_backs.append(lr_schedue)
return call_backs
def train(self):
# Yolo Compile
print('Compiling model... ')
self.yolo_model.compile(loss={'yolo_loss': lambda y_true, y_pred: y_pred},
optimizer=Adam(lr=self.config.lr))
if self.config.workers > 0:
use_multiprocessing = True
else:
use_multiprocessing = False
print('Starting training:')
self.yolo_model.fit_generator(self.train_generator,
callbacks=self.callbacks,
epochs=self.config.epoches,
initial_epoch=self.config.start_epoch,
verbose=True,
workers=self.config.workers,
use_multiprocessing=use_multiprocessing,
max_queue_size=self.config.max_queue_size
)
class Tester(Executor):
def __init__(self, config, **kwargs):
super(Tester, self).__init__(config, **kwargs)
def build_callbacks(self):
self.evaluator = RedirectModel(Evaluate(self.dataset['val'], self.config, phase='test'), self.yolo_body)
self.evaluator.on_train_begin()
def load_data(self):
self.dataset['val'], self.dataset_len['val'] = self.load_dataset('evaluate_set')
def load_model(self, model_body):
model_body.load_weights(self.config.evaluate_model, by_name=False, skip_mismatch=False)
print('Load weights {}.'.format(self.config.evaluate_model))
def eval(self):
results = dict()
self.evaluator.on_epoch_end(-1, results)
seg_iou = results['seg_iou']
seg_prec = results['seg_prec']
# dump results to text file
if not os.path.exists('result/'):
os.mkdir('result/')
from datetime import datetime
timestr = datetime.now().strftime('%m_%d_%H_%M_%S')
with open('result/result_%s.txt' % (timestr), 'w') as f_w:
f_w.write('segmentation result:' + '\n')
f_w.write('seg_iou: %.4f\n' % (seg_iou))
for item in seg_prec:
f_w.write('prec@%.2f: %.4f' % (item, seg_prec[item])+'\n')
f_w.write('\n')
class Debugger(Executor):
def __init__(self, config, **kwargs):
self.config = config
self.debug = True
self.dataset, self.dataset_len = self.load_dataset('train_set')
self.train_generator = Generator(self.dataset, self.config)
self.train_generator.__getitem__(1)
kwargs.update({'GPUS': 1, 'debug': True})
super(Debugger, self).__init__(config, **kwargs)
def build_callbacks(self):
return None
def load_data(self):
return None
def load_model(self, model_body):
return None
def run(self):
self.yolo_model.summary()
self.yolo_model.compile(loss={'yolo_loss': lambda y_true, y_pred: y_pred},
optimizer=Adam(lr=self.config.lr))