-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathselection_util.py
466 lines (404 loc) · 24.2 KB
/
selection_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import util
import logging
from collections import defaultdict, Counter
import torch
from tqdm import tqdm
import span_util
import torch.nn.functional as F
from model import Model
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from cluster import antecedent_linking, dbscan_clustering
logger = logging.getLogger(__name__)
def filter_candidates_against_special(runner, features, special_clusters):
""" Filter out overlapping candidates against special seed spans. """
num_filtered, num_total, num_selected = 0, 0, 0
for feat in features:
feat['selected_span_starts'] = feat['attr_span_starts'][:]
feat['selected_span_ends'] = feat['attr_span_ends'][:]
feat['selected_clusters'] = feat['attr_clusters'][:]
feat['selected_properties'] = [(runner.prop_orig_seed + e - s + 1)
for s, e in zip(feat['attr_span_starts'], feat['attr_span_ends'])]
filtered_starts, filtered_ends = span_util.remove_overlap_batch(
feat['ngram_span_starts'], feat['ngram_span_ends'],
[s for s, c in zip(feat['selected_span_starts'], feat['selected_clusters']) if c == 0 or c in special_clusters],
[e for e, c in zip(feat['selected_span_ends'], feat['selected_clusters']) if c == 0 or c in special_clusters],
allow_nested=False)
filtered_starts += [s for s, c in zip(feat['selected_span_starts'], feat['selected_clusters']) if c in special_clusters]
filtered_ends += [e for e, c in zip(feat['selected_span_ends'], feat['selected_clusters']) if c in special_clusters]
num_filtered += (len(feat['ngram_span_starts']) - len(filtered_starts))
num_total += len(feat['ngram_span_starts'])
num_selected += len(feat['selected_span_starts'])
feat['ngram_span_starts'] = filtered_starts
feat['ngram_span_ends'] = filtered_ends
logger.info(f'Filtered overlapping candidates against {num_selected} special seed spans: '
f'{num_total} -> {num_total - num_filtered} ({num_filtered / num_total * 100:.2f}%)')
return features
def filter_candidates_against_selected(features):
""" Filter out cross-overlapping candidates against selected spans (can be nested against selected). """
num_filtered, num_total, num_selected = 0, 0, 0
for feat in features:
filtered_starts, filtered_ends = span_util.remove_overlap_batch(
feat['ngram_span_starts'], feat['ngram_span_ends'],
feat['selected_span_starts'], feat['selected_span_ends'],
allow_nested=True)
num_filtered += (len(feat['ngram_span_starts']) - len(filtered_starts))
num_total += len(feat['ngram_span_starts'])
num_selected += len(feat['selected_span_starts'])
feat['ngram_span_starts'] = filtered_starts
feat['ngram_span_ends'] = filtered_ends
logger.info(f'Filtered cross-overlapping candidates against {num_selected} selected: '
f'{num_total} -> {num_total - num_filtered} ({num_filtered / num_total * 100:.2f}%)')
return features
def filter_overlapping_candidates(features):
""" Filter out overlapping candidates (no nested) sequentially based on length; called once in initialize_with_seed(). """
num_ngram_before, num_ngram_after = 0, 0
for feat in features:
ngram_priority = [(e - s + 1, feat['ngram_counts'].get((s, e), 100000))
for s, e in zip(feat['ngram_span_starts'], feat['ngram_span_ends'])]
indices = util.argsort(ngram_priority, reverse=True)
feat['ngram_span_starts'] = [feat['ngram_span_starts'][i] for i in indices]
feat['ngram_span_ends'] = [feat['ngram_span_ends'][i] for i in indices]
num_ngram_before += len(feat['ngram_span_starts'])
selected_i = span_util.remove_overlap_sequential(feat['ngram_span_starts'], feat['ngram_span_ends'],
allow_nested=False)
feat['ngram_span_starts'] = [feat['ngram_span_starts'][i] for i in selected_i]
feat['ngram_span_ends'] = [feat['ngram_span_ends'][i] for i in selected_i]
num_ngram_after += len(feat['ngram_span_starts'])
logger.info(f'Filtered overlapping candidates sequentially based on length: {num_ngram_before} -> {num_ngram_after}')
return features
def get_selected_spans(feat, prop_threshold):
""" Get spans with prop >= threshold. """
orig_starts, orig_ends, orig_clusters = [], [], []
for start, end, cluster, prop in zip(feat['selected_span_starts'], feat['selected_span_ends'],
feat['selected_clusters'], feat['selected_properties']):
if prop >= prop_threshold:
if cluster == 0:
continue
orig_starts.append(start)
orig_ends.append(end)
orig_clusters.append(cluster)
return orig_starts, orig_ends, orig_clusters
def _get_ngram_and_selected_hidden(runner, model, features, layer, selected_threshold):
""" Get normalized hidden for ngram and selected (prop >= threshold). """
conf = runner.config
eval_dataloader = DataLoader(features, sampler=SequentialSampler(features),
batch_size=conf['eval_batch_size'], collate_fn=runner.collator)
model.eval()
model.to(runner.device)
feat_i, ngram_hidden, selected_hidden, selected_clusters = 0, [], [], []
for batch_i, batch in enumerate(tqdm(eval_dataloader, desc='Obtaining hidden')):
seq_hidden = model.get_seq_hidden(**batch, layer=layer)
for row_i in range(seq_hidden.size()[0]):
feat, hidden = features[feat_i], seq_hidden[row_i] # [seq_len, hidden]
ngram_hidden.append(
Model.get_span_hidden(hidden, feat['ngram_span_starts'], feat['ngram_span_ends']))
sel_starts, sel_ends, clusters = get_selected_spans(feat, prop_threshold=selected_threshold)
selected_hidden += Model.get_span_hidden(hidden, sel_starts, sel_ends)
selected_clusters += clusters
feat_i += 1
assert feat_i == len(features)
selected_hidden = torch.stack(selected_hidden, dim=0) # [num_selected, hidden]
selected_clusters = torch.tensor(selected_clusters, dtype=torch.long, device=selected_hidden.device)
return ngram_hidden, selected_hidden, selected_clusters
def _get_similarity_for_expansion(runner, model, features, layer):
""" Get cosine similarity between ngram & seed.
"""
model.eval()
with torch.no_grad():
ngram_hidden, seed_hidden, seed_clusters = _get_ngram_and_selected_hidden(runner, model, features, layer, selected_threshold=runner.prop_orig_seed)
# Get cosine similarity between ngram & seed
all_similarities, all_clusters = [], []
for feat_i, (feat, feat_ngram_hidden) in enumerate(tqdm(zip(features, ngram_hidden), total=len(ngram_hidden))):
if not feat_ngram_hidden:
all_similarities.append(None)
all_clusters.append(None)
continue
feat_ngram_hidden = torch.stack(feat_ngram_hidden, dim=0) # [num_ngrams, hidden]
similarity = torch.matmul(feat_ngram_hidden, seed_hidden.t()) # [num_ngrams, num_seeds]
ngram_similarity, ngram_sel_idx = torch.max(similarity, dim=-1)
all_similarities.append(ngram_similarity.cpu())
all_clusters.append(seed_clusters[ngram_sel_idx].cpu())
return all_similarities, all_clusters
def expand_seed_lexical(runner, features):
""" Expand by lexical matching between ngram & seed.
Expanded will have property = (prop_expanded_seed + lexicon_length).
"""
seed_lexicons = defaultdict(lambda: Counter())
count_th = 1
# Collect seed lexicons
for feat in features:
sel_starts, sel_ends, clusters = get_selected_spans(feat, prop_threshold=runner.prop_orig_seed)
for span_start, span_end, span_cluster in zip(sel_starts, sel_ends, clusters):
lexicon = tuple(feat['input_ids'][span_start: span_end + 1])
seed_lexicons[lexicon][span_cluster] += 1
# Filter by count
# Prioritize most common cluster for a lexicon
filtered_lexicons = {}
for lexicon, counter in seed_lexicons.items():
if sum(counter.values()) < count_th:
continue
orig_most_common_cluster, _ = counter.most_common(1)[0]
filtered_lexicons[lexicon] = orig_most_common_cluster
seed_lexicons = filtered_lexicons
# Expand and attach lexicon length as property
ngram_expand, ngram_total = 0, 0
for feat in tqdm(features):
for ngram_start, ngram_end in zip(feat['ngram_span_starts'], feat['ngram_span_ends']):
ngram_lexicon = tuple(feat['input_ids'][ngram_start: ngram_end + 1])
if ngram_lexicon in seed_lexicons:
ngram_cluster = seed_lexicons[ngram_lexicon]
feat['selected_span_starts'].append(ngram_start)
feat['selected_span_ends'].append(ngram_end)
feat['selected_clusters'].append(ngram_cluster)
feat['selected_properties'].append(runner.prop_expanded_seed + len(ngram_lexicon))
ngram_expand += 1
ngram_total += 1
logger.info(f'Expanded seed upon {len(seed_lexicons)} lexicons (count >= {count_th}): '
f'{ngram_expand}/{ngram_total} ({ngram_expand / ngram_total * 100:.2f}%) candidates')
return features
def filter_expanded_seed(runner, features):
""" Remove overlapping/duplicate seed sequentially. """
sanitize_before, sanitize_after, sanitize_after_from_sim = 0, 0, 0
for feat in features:
# Sort selection based on scores
indices = util.argsort(feat['selected_properties'], reverse=True)
selected_starts = [feat['selected_span_starts'][i] for i in indices]
selected_ends = [feat['selected_span_ends'][i] for i in indices]
selected_clusters = [feat['selected_clusters'][i] for i in indices]
selected_properties = [feat['selected_properties'][i] for i in indices]
sanitize_before += sum([(p < runner.prop_orig_seed) for p in selected_properties])
# Remove overlap/duplicate
selected_span_indices = span_util.remove_overlap_sequential(selected_starts, selected_ends, allow_nested=False)
feat['selected_span_starts'] = [selected_starts[i] for i in selected_span_indices]
feat['selected_span_ends'] = [selected_ends[i] for i in selected_span_indices]
feat['selected_clusters'] = [selected_clusters[i] for i in selected_span_indices]
feat['selected_properties'] = [selected_properties[i] for i in selected_span_indices]
sanitize_after += sum([(p < runner.prop_orig_seed) for p in feat['selected_properties']])
sanitize_after_from_sim += sum([(p < runner.prop_expanded_seed + 1) for p in feat['selected_properties']])
logger.info(f'Filtered expanded seeds: {sanitize_before} -> {sanitize_after} spans')
logger.info(f'After filtering, {sanitize_after_from_sim} ({sanitize_after_from_sim / sanitize_after * 100:.2f}%)'
f' expanded seeds are by similarity')
return features
def _get_hidden_for_clustering(runner, model, features, exp_suffix):
""" Get normalized hidden of existing spans & ngrams for clustering (cache results). """
using_gold_ngram = features[0].get('gold_ngram', False)
cache_identifier = 'cluster_cache' + ('_w_gold' if using_gold_ngram else '')
cache = runner.load_results(runner.dataset_name, cache_identifier, suffix=exp_suffix, ext='bin')
if True and cache is not None:
all_ngrams, all_ngram_hidden, existing_hidden, existing_clusters, ngram_cls_clusters, ngram_cls_probs = cache
all_ngram_hidden = all_ngram_hidden.to(runner.device)
existing_hidden = existing_hidden.to(runner.device)
existing_clusters = existing_clusters.to(runner.device)
if ngram_cls_clusters is not None:
ngram_cls_clusters = ngram_cls_clusters.to(runner.device)
ngram_cls_probs = ngram_cls_probs.to(runner.device)
else:
model.eval()
with torch.no_grad():
ngram_hidden, existing_hidden, existing_clusters = _get_ngram_and_selected_hidden(
runner, model, features, layer=-1, selected_threshold=runner.prop_clustered)
all_ngrams, all_ngram_hidden = [], []
for feat_i, (feat, feat_ngram_hidden) in enumerate(zip(features, ngram_hidden)):
all_ngrams += [(feat_i, start, end) for start, end in
zip(feat['ngram_span_starts'], feat['ngram_span_ends'])]
all_ngram_hidden += feat_ngram_hidden
all_ngram_hidden = torch.stack(all_ngram_hidden, dim=0) # [num_ngrams, hidden]
assert len(all_ngrams) == all_ngram_hidden.size()[0]
# Do cls
if model.config['attr_cls_coef']:
ngram_cls_clusters, ngram_cls_probs = get_attr_cls(model, all_ngram_hidden, step=256)
else:
ngram_cls_clusters, ngram_cls_probs = None, None
runner.save_results(runner.dataset_name, cache_identifier, suffix=exp_suffix, ext='bin', results=(
all_ngrams, all_ngram_hidden.cpu(), existing_hidden.cpu(), existing_clusters.cpu(),
None if ngram_cls_clusters is None else ngram_cls_clusters, None if ngram_cls_probs is None else ngram_cls_probs))
return all_ngrams, all_ngram_hidden, existing_hidden, existing_clusters, ngram_cls_clusters, ngram_cls_probs
def get_attr_cls(model, span_hidden, step=256):
model.eval()
with torch.no_grad():
all_pred_attrs, all_pred_probs = [], []
i = 0
while i < span_hidden.size()[0]:
hidden = span_hidden[i: i+step]
pred_attrs, pred_probs = model.get_attr_classification(hidden) # [step, hidden]
all_pred_attrs.append(pred_attrs)
all_pred_probs.append(pred_probs)
i += step
all_pred_attrs = torch.cat(all_pred_attrs, dim=0) # [num_spans]
all_pred_probs = torch.cat(all_pred_probs, dim=0)
return all_pred_attrs, all_pred_probs
def gradual_cluster(runner, model, features, exp_suffix, use_attr_cls, new_cluster_start=1000):
conf = runner.config
all_ngrams, all_ngram_hidden, existing_hidden, existing_clusters, ngram_cls_clusters, ngram_cls_probs = _get_hidden_for_clustering(runner, model, features, exp_suffix)
with torch.no_grad():
# Gather existing clusters
cluster_ids = existing_clusters.unique().tolist()
assert 0 not in cluster_ids
cluster2size, cluster_meanhidden, cluster_meanth = {}, [], []
for cluster_i in cluster_ids:
hidden = existing_hidden[existing_clusters == cluster_i]
mean_hidden = hidden.mean(dim=0)
cluster2size[cluster_i] = hidden.size()[0]
cluster_meanhidden.append(mean_hidden)
cluster_meanth.append(max(torch.matmul(hidden, mean_hidden.unsqueeze(-1)).mean() * conf['cluster_sim_relax'],
torch.tensor(0.4, device=hidden.device)))
cluster_meanhidden = torch.stack(cluster_meanhidden, dim=0) # [num_clusters, hidden]
cluster_meanth = torch.stack(cluster_meanth, dim=0) # [num_clusters]
# Expand existing
logger.info(f'Expanding existing clusters by {conf["cluster_sim_relax"]} relaxation...')
sim = torch.matmul(all_ngram_hidden, cluster_meanhidden.t()) # [num_ngrams, num_clusters]
max_sim, max_cluster_i = (sim - cluster_meanth.unsqueeze(0)).max(dim=-1) # [num_ngrams]
ngram_sel_clusters = torch.tensor(cluster_ids, device=sim.device)[max_cluster_i]
ngram_sel_scores = max_sim
ngram_sel_invalid = max_sim < 0
ngram_sel_clusters[ngram_sel_invalid] = -1 # Mark invalid selection: assign cluster -1
ngram_sel_clusters, ngram_sel_scores = ngram_sel_clusters.tolist(), ngram_sel_scores.tolist()
logger.info(f'Expanded existing clusters: {ngram_sel_invalid.size()[0] - ngram_sel_invalid.sum().item()} ngrams')
# Add newly selected ngrams
for ngram_i, (cluster_i, score) in enumerate(zip(ngram_sel_clusters, ngram_sel_scores)):
if cluster_i == -1 and use_attr_cls:
cluster_i, score = ngram_cls_clusters[ngram_i], ngram_cls_probs[ngram_i]
if cluster_i != -1:
feat_i, start, end = all_ngrams[ngram_i]
feat = features[feat_i]
feat['selected_span_starts'].append(start)
feat['selected_span_ends'].append(end)
feat['selected_clusters'].append(cluster_i)
feat['selected_properties'].append(score + 0.02 * (end - start))
# Gather remaining ngrams
ngram_remaining_indices = torch.arange(0, len(all_ngrams), device=max_sim.device)[ngram_sel_invalid]
remaining_ngram_hidden = all_ngram_hidden[ngram_remaining_indices] # [num_remaining_ngrams, hidden]
ngram_remaining_indices = ngram_remaining_indices.tolist()
remaining_ngrams = [all_ngrams[i] for i in ngram_remaining_indices]
if not remaining_ngrams:
logger.info(f'No ngrams left for DBSCAN')
return features
# Cluster remaining ngrams by DBSCAN
logger.info(f'Getting new clusters on {len(remaining_ngrams)} ngrams by DBSCAN...')
remaining_ngram_cluster_ids = dbscan_clustering(remaining_ngram_hidden.cpu().numpy(), metric='cosine',
eps=conf['dbscan_eps'], min_samples=conf['dbscan_min_samples'], n_jobs=8)
remaining_ngram_cluster_ids = remaining_ngram_cluster_ids.tolist()
# Add newly selected ngrams
num_existing_clusters = max(max(cluster_ids) + 1, new_cluster_start)
for ngram, cluster_i in zip(remaining_ngrams, remaining_ngram_cluster_ids):
if cluster_i >= 0:
feat_i, start, end = ngram
feat = features[feat_i]
feat['selected_span_starts'].append(start)
feat['selected_span_ends'].append(end)
feat['selected_clusters'].append(cluster_i + num_existing_clusters)
feat['selected_properties'].append(0.02 * (end - start))
return features
def baseline_cluster(runner, model, features, exp_suffix, use_attr_cls, new_cluster_start=1000):
""" In-place. (1) clustering by DBSCAN (2) combined with classification if needed.
"""
conf = runner.config
all_ngrams, all_ngram_hidden, existing_hidden, existing_clusters, ngram_cls_attrs, ngram_cls_probs = _get_hidden_for_clustering(runner, model, features, exp_suffix)
assert 0 not in existing_clusters # Make sure not expanding brand cluster
num_existing_clusters = max(max(existing_clusters) + 1, new_cluster_start)
# DBSCAN
ngram_dbscan_clusters = dbscan_clustering(all_ngram_hidden.cpu().numpy(), metric='cosine',
eps=conf['dbscan_eps'], min_samples=conf['dbscan_min_samples'], n_jobs=8)
dbscan_clusters = defaultdict(lambda: set())
for ngram_i, ngram_c in enumerate(ngram_dbscan_clusters.tolist()):
if ngram_c >= 0:
dbscan_clusters[ngram_c].add(ngram_i)
all_dbscan_ngrami = set.union(*dbscan_clusters.values())
logger.info(f'DBSCAN clustering: {len(all_dbscan_ngrami)} ngrams')
# Add classification
if not use_attr_cls:
clusters = {(ci + num_existing_clusters): c for ci, c in dbscan_clusters.items()}
ngrami2score = {}
else:
assert ngram_cls_attrs is not None
cls_prob_threshold = min(1, 1 / len(existing_clusters.unique().tolist()) * conf['attr_cls_th'])
ngram_cls_invalid = ngram_cls_probs < cls_prob_threshold
ngram_cls_attrs[ngram_cls_invalid] = -1 # Mark invalid selection: assign cluster -1
cls_clusters = defaultdict(lambda: set())
for ngram_i, ngram_c in enumerate(ngram_cls_attrs.tolist()):
if ngram_c >= 0:
cls_clusters[ngram_c].add(ngram_i)
all_cls_ngrami = set.union(*cls_clusters.values())
logger.info(f'Attr cls (> {cls_prob_threshold} threshold): {len(all_cls_ngrami)} ngrams')
# Align CLS to DBSCAN clusters
cls2dbscan, dbscan2cls = {}, {}
for cls_ci, cls_c in cls_clusters.items():
num_overlapping = [(len(dbscan_c & cls_c), dbscan_ci) for dbscan_ci, dbscan_c in dbscan_clusters.items()]
most_overlapping, matched_dbscan_ci = max(num_overlapping)
cls2dbscan[cls_ci] = matched_dbscan_ci
dbscan2cls[matched_dbscan_ci] = cls_ci
# Merge
for cls_ci, cls_c in cls_clusters.items():
dbscan_c = dbscan_clusters[cls2dbscan[cls_ci]]
dbscan_c |= (cls_c - all_dbscan_ngrami) # Combine clusters
# Align with existing cluster ids
clusters = {dbscan2cls.get(ci, ci + num_existing_clusters): c for ci, c in dbscan_clusters.items()}
ngrami2score = {ngram_i: prob for ngram_i, prob in enumerate(ngram_cls_probs.tolist()) if prob >= 0}
# Add ngram attributes to features
ngrami2ci = {}
for ci, c in clusters.items():
for ngram_i in c:
ngrami2ci[ngram_i] = ci
for ngram_i, ci in ngrami2ci.items():
feat_i, start, end = all_ngrams[ngram_i]
feat = features[feat_i]
feat['selected_span_starts'].append(start)
feat['selected_span_ends'].append(end)
feat['selected_clusters'].append(ci)
feat['selected_properties'].append(ngrami2score.get(ngram_i, 0))
return features
def tag_cluster(runner, model, features, exp_suffix, use_attr_cls, new_cluster_start=1000):
logger.info(f'Performing tagging for clustering ...')
dataloader = DataLoader(features, sampler=SequentialSampler(features),
batch_size=runner.config['eval_batch_size'], collate_fn=runner.collator)
model.eval()
model.to(runner.device)
all_seq_entities = []
for batch_i, batch in enumerate(tqdm(dataloader)):
with torch.no_grad():
batch.pop('token_tags', None)
logits = model(**batch)
all_seq_entities += model.decode(logits, attention_mask=batch['attention_mask'])
assert len(all_seq_entities) == len(features)
# Add entities to features
for feat_i, entities in enumerate(all_seq_entities):
feat = features[feat_i]
for ci, s, e, _ in entities:
feat['selected_span_starts'].append(s)
feat['selected_span_ends'].append(e)
feat['selected_clusters'].append(int(ci))
feat['selected_properties'].append(0)
return features
def opentag_cluster(runner, model, features, exp_suffix, use_attr_cls, new_cluster_start=1000):
# Condition all training types for inference on each input sequence
for feat in features:
feat['opentag_types'] = model.training_types
logger.info(f'Performing opentag for clustering ...')
dataloader = DataLoader(features, sampler=SequentialSampler(features),
batch_size=runner.config['eval_batch_size'], collate_fn=runner.collator)
model.eval()
model.to(runner.device)
all_seq_entities = []
for batch_i, batch in enumerate(tqdm(dataloader)):
with torch.no_grad():
flattened_seq_logits = model(**batch)
flattened_typed_entities = model.decode(flattened_seq_logits, attention_mask=batch['attention_mask'].repeat_interleave(len(model.training_types), dim=0))
assert len(flattened_typed_entities) == batch['input_ids'].size()[0] * len(model.training_types)
flattened_i = 0
while flattened_i < len(flattened_typed_entities):
seq_entities = []
for entity_type, entities in zip(model.training_types, flattened_typed_entities[flattened_i: flattened_i+len(model.training_types)]):
for _, s, e, _ in entities:
seq_entities.append((entity_type, s, e))
flattened_i += len(model.training_types)
all_seq_entities.append(seq_entities)
assert len(all_seq_entities) == len(features)
# Add entities to features
for feat_i, entities in enumerate(all_seq_entities):
feat = features[feat_i]
for ci, s, e in entities:
feat['selected_span_starts'].append(s)
feat['selected_span_ends'].append(e)
feat['selected_clusters'].append(ci)
feat['selected_properties'].append(0)
return features