forked from GOATmessi8/RFBNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRFB_Net_mobile.py
346 lines (288 loc) · 12.4 KB
/
RFB_Net_mobile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from layers import *
import torchvision.transforms as transforms
import torchvision.models as models
import torch.backends.cudnn as cudnn
import os
class BasicConv(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True, bn=True, bias=False):
super(BasicConv, self).__init__()
self.out_channels = out_planes
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias)
self.bn = nn.BatchNorm2d(out_planes,eps=1e-5, momentum=0.01, affine=True) if bn else None
self.relu = nn.ReLU(inplace=True) if relu else None
def forward(self, x):
x = self.conv(x)
if self.bn is not None:
x = self.bn(x)
if self.relu is not None:
x = self.relu(x)
return x
class BasicSepConv(nn.Module):
def __init__(self, in_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True, bn=True, bias=False):
super(BasicSepConv, self).__init__()
self.out_channels = in_planes
self.conv = nn.Conv2d(in_planes, in_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups = in_planes, bias=bias)
self.bn = nn.BatchNorm2d(in_planes,eps=1e-5, momentum=0.01, affine=True) if bn else None
self.relu = nn.ReLU(inplace=True) if relu else None
def forward(self, x):
x = self.conv(x)
if self.bn is not None:
x = self.bn(x)
if self.relu is not None:
x = self.relu(x)
return x
class BasicRFB(nn.Module):
def __init__(self, in_planes, out_planes, stride=1, scale = 0.1):
super(BasicRFB, self).__init__()
self.scale = scale
self.out_channels = out_planes
inter_planes = in_planes // 8
self.branch1 = nn.Sequential(
BasicConv(in_planes, inter_planes, kernel_size=1, stride=1),
BasicConv(inter_planes, (inter_planes//2)*3, kernel_size=(1,3), stride=1, padding=(0,1)),
BasicConv((inter_planes//2)*3, (inter_planes//2)*3, kernel_size=(3,1), stride=stride, padding=(1,0)),
BasicSepConv((inter_planes//2)*3, kernel_size=3, stride=1, padding=3, dilation=3, relu=False)
)
self.branch2 = nn.Sequential(
BasicConv(in_planes, inter_planes, kernel_size=1, stride=1),
BasicConv(inter_planes, (inter_planes//2)*3, kernel_size=3, stride=1, padding=1),
BasicConv((inter_planes//2)*3, (inter_planes//2)*3, kernel_size=3, stride=stride, padding=1),
BasicSepConv((inter_planes//2)*3, kernel_size=3, stride=1, padding=5, dilation=5, relu=False)
)
self.ConvLinear = BasicConv(3*inter_planes, out_planes, kernel_size=1, stride=1, relu=False)
if in_planes == out_planes:
self.identity = True
else:
self.identity = False
self.shortcut = BasicConv(in_planes, out_planes, kernel_size=1, stride=stride, relu=False)
self.relu = nn.ReLU(inplace=False)
def forward(self,x):
x1 = self.branch1(x)
x2 = self.branch2(x)
out = torch.cat((x1,x2),1)
out = self.ConvLinear(out)
if self.identity:
out = out*self.scale + x
else:
short = self.shortcut(x)
out = out*self.scale + short
out = self.relu(out)
return out
class BasicRFB_a(nn.Module):
def __init__(self, in_planes, out_planes, stride=1, scale = 0.1):
super(BasicRFB_a, self).__init__()
self.scale = scale
self.out_channels = out_planes
inter_planes = in_planes //4
self.branch0 = nn.Sequential(
BasicConv(in_planes, inter_planes, kernel_size=1, stride=1),
BasicSepConv(inter_planes, kernel_size=3, stride=1, padding=1, dilation=1, relu=False)
)
self.branch1 = nn.Sequential(
BasicConv(in_planes, inter_planes, kernel_size=1, stride=1),
BasicConv(inter_planes, inter_planes, kernel_size=(3,1), stride=1, padding=(1,0)),
BasicSepConv(inter_planes, kernel_size=3, stride=1, padding=3, dilation=3, relu=False)
)
self.branch2 = nn.Sequential(
BasicConv(in_planes, inter_planes, kernel_size=1, stride=1),
BasicConv(inter_planes, inter_planes, kernel_size=(1,3), stride=stride, padding=(0,1)),
BasicSepConv(inter_planes, kernel_size=3, stride=1, padding=3, dilation=3, relu=False)
)
self.branch3 = nn.Sequential(
BasicConv(in_planes, inter_planes//2, kernel_size=1, stride=1),
BasicConv(inter_planes//2, (inter_planes//4)*3, kernel_size=(1,3), stride=1, padding=(0,1)),
BasicConv((inter_planes//4)*3, inter_planes, kernel_size=(3,1), stride=stride, padding=(1,0)),
BasicSepConv(inter_planes, kernel_size=3, stride=1, padding=5, dilation=5, relu=False)
)
self.ConvLinear = BasicConv(4*inter_planes, out_planes, kernel_size=1, stride=1, relu=False)
self.relu = nn.ReLU(inplace=False)
def forward(self,x):
x0 = self.branch0(x)
x1 = self.branch1(x)
x2 = self.branch2(x)
x3 = self.branch3(x)
out = torch.cat((x0,x1,x2,x3),1)
out = self.ConvLinear(out)
out = out*self.scale + x
out = self.relu(out)
return out
class RFBNet(nn.Module):
def __init__(self, phase, size, base, extras, head, num_classes):
super(RFBNet, self).__init__()
self.phase = phase
self.num_classes = num_classes
self.size = size
if size == 300:
self.indicator = 1
else:
print("Error: Sorry only RFB300_mobile is supported!")
return
self.base = nn.ModuleList(base)
self.Norm = BasicRFB_a(512,512,stride = 1,scale=1.0)
self.extras = nn.ModuleList(extras)
self.loc = nn.ModuleList(head[0])
self.conf = nn.ModuleList(head[1])
if self.phase == 'test':
self.softmax = nn.Softmax(dim=-1)
def forward(self, x):
"""Applies network layers and ops on input image(s) x.
Args:
x: input image or batch of images. Shape: [batch,3*batch,300,300].
Return:
Depending on phase:
test:
Variable(tensor) of output class label predictions,
confidence score, and corresponding location predictions for
each object detected. Shape: [batch,topk,7]
train:
list of concat outputs from:
1: confidence layers, Shape: [batch*num_priors,num_classes]
2: localization layers, Shape: [batch,num_priors*4]
3: priorbox layers, Shape: [2,num_priors*4]
"""
sources = list()
loc = list()
conf = list()
# apply vgg up to conv4_3 relu
for k in range(12):
x = self.base[k](x)
s = self.Norm(x)
sources.append(s)
for k in range(12, len(self.base)):
x = self.base[k](x)
sources.append(x)
# apply extra layers and cache source layer outputs
for k, v in enumerate(self.extras):
x = v(x)
if k < self.indicator or k%2 == 0:
sources.append(x)
# apply multibox head to source layers
for (x, l, c) in zip(sources, self.loc, self.conf):
loc.append(l(x).permute(0, 2, 3, 1).contiguous())
conf.append(c(x).permute(0, 2, 3, 1).contiguous())
#print([o.size() for o in loc])
loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)
if self.phase == "test":
output = (
loc.view(loc.size(0), -1, 4), # loc preds
self.softmax(conf.view(-1, self.num_classes)), # conf preds
)
else:
output = (
loc.view(loc.size(0), -1, 4),
conf.view(conf.size(0), -1, self.num_classes),
)
return output
def load_weights(self, base_file):
other, ext = os.path.splitext(base_file)
if ext == '.pkl' or '.pth':
print('Loading weights into state dict...')
self.load_state_dict(torch.load(base_file))
print('Finished!')
else:
print('Sorry only .pth and .pkl files supported.')
def conv_bn(inp,oup,stride):
return nn.Sequential(
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
nn.BatchNorm2d(oup),
nn.ReLU(inplace=True)
)
def conv_dw(inp, oup, stride):
return nn.Sequential(
nn.Conv2d(inp,inp, kernel_size=3, stride=stride, padding=1,groups = inp, bias=False),
nn.BatchNorm2d(inp),
nn.ReLU(inplace=True),
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
nn.ReLU(inplace=True),
)
def MobileNet():
layers = []
layers += [conv_bn(3, 32, 2)]
layers += [conv_dw(32, 64, 1)]
layers += [conv_dw(64, 128, 2)]
layers += [conv_dw(128, 128, 1)]
layers += [conv_dw(128, 256, 2)]
layers += [conv_dw(256, 256, 1)]
layers += [conv_dw(256, 512, 2)]
layers += [conv_dw(512, 512, 1)]
layers += [conv_dw(512, 512, 1)]
layers += [conv_dw(512, 512, 1)]
layers += [conv_dw(512, 512, 1)]
layers += [conv_dw(512, 512, 1)]
layers += [conv_dw(512, 1024, 2)]
layers += [conv_dw(1024, 1024, 1)]
return layers
def add_extras(size, cfg, i, batch_norm=False):
layers = []
in_channels = i
flag = False
for k, v in enumerate(cfg):
if in_channels != 'S':
if v == 'S':
layers += [BasicRFB(in_channels, cfg[k+1], stride=2, scale = 1.0)]
else:
layers += [BasicRFB(in_channels, v, scale = 1.0)]
in_channels = v
if size ==300:
layers += [BasicConv(512,128,kernel_size=1,stride=1)]
layers += [BasicConv(128,256,kernel_size=3,stride=2, padding=1)]
layers += [BasicConv(256,128,kernel_size=1,stride=1)]
layers += [BasicConv(128,256,kernel_size=3,stride=2, padding=1)]
layers += [BasicConv(256,64,kernel_size=1,stride=1)]
layers += [BasicConv(64,128,kernel_size=3,stride=2, padding=1)]
else:
print("Error: Sorry only RFB300_mobile is supported!")
return
return layers
extras = {
'300': ['S', 512 ],
}
def multibox(size, base, extra_layers, cfg, num_classes):
loc_layers = []
conf_layers = []
base_net= [-2,-1]
for k, v in enumerate(base_net):
if k == 0:
loc_layers += [nn.Conv2d(512,
cfg[k] * 4, kernel_size=1, padding=0)]
conf_layers +=[nn.Conv2d(512,
cfg[k] * num_classes, kernel_size=1, padding=0)]
else:
loc_layers += [nn.Conv2d(1024,
cfg[k] * 4, kernel_size=1, padding=0)]
conf_layers += [nn.Conv2d(1024,
cfg[k] * num_classes, kernel_size=1, padding=0)]
i = 2
indicator = 0
if size == 300:
indicator = 1
else:
print("Error: Sorry only RFB300_mobile is supported!")
return
for k, v in enumerate(extra_layers):
if k < indicator or k%2== 0:
loc_layers += [nn.Conv2d(v.out_channels, cfg[i]
* 4, kernel_size=1, padding=0)]
conf_layers += [nn.Conv2d(v.out_channels, cfg[i]
* num_classes, kernel_size=1, padding=0)]
i +=1
return base, extra_layers, (loc_layers, conf_layers)
mbox = {
'300': [6, 6, 6, 6, 4, 4], # number of boxes per feature map location
}
def build_net(phase, size=300, num_classes=21):
if phase != "test" and phase != "train":
print("Error: Phase not recognized")
return
if size != 300:
print("Error: Sorry only RFB300_mobile is supported!")
return
return RFBNet(phase, size, *multibox(size, MobileNet(),
add_extras(size, extras[str(size)], 1024),
mbox[str(size)], num_classes), num_classes)