forked from Aliang-CN/GATNE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_pytorch.py
295 lines (250 loc) · 10.3 KB
/
main_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import math
import os
import sys
import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import tqdm
from numpy import random
from torch.nn.parameter import Parameter
from utils import *
def get_batches(pairs, neighbors, batch_size):
n_batches = (len(pairs) + (batch_size - 1)) // batch_size
for idx in range(n_batches):
x, y, t, neigh = [], [], [], []
for i in range(batch_size):
index = idx * batch_size + i
if index >= len(pairs):
break
x.append(pairs[index][0])
y.append(pairs[index][1])
t.append(pairs[index][2])
neigh.append(neighbors[pairs[index][0]])
yield torch.tensor(x), torch.tensor(y), torch.tensor(t), torch.tensor(neigh)
class GATNEModel(nn.Module):
def __init__(
self, num_nodes, embedding_size, embedding_u_size, edge_type_count, dim_a
):
super(GATNEModel, self).__init__()
self.num_nodes = num_nodes
self.embedding_size = embedding_size
self.embedding_u_size = embedding_u_size
self.edge_type_count = edge_type_count
self.dim_a = dim_a
self.node_embeddings = Parameter(torch.FloatTensor(num_nodes, embedding_size))
self.node_type_embeddings = Parameter(
torch.FloatTensor(num_nodes, edge_type_count, embedding_u_size)
)
self.trans_weights = Parameter(
torch.FloatTensor(edge_type_count, embedding_u_size, embedding_size)
)
self.trans_weights_s1 = Parameter(
torch.FloatTensor(edge_type_count, embedding_u_size, dim_a)
)
self.trans_weights_s2 = Parameter(torch.FloatTensor(edge_type_count, dim_a, 1))
self.reset_parameters()
def reset_parameters(self):
self.node_embeddings.data.uniform_(-1.0, 1.0)
self.node_type_embeddings.data.uniform_(-1.0, 1.0)
self.trans_weights.data.normal_(std=1.0 / math.sqrt(self.embedding_size))
self.trans_weights_s1.data.normal_(std=1.0 / math.sqrt(self.embedding_size))
self.trans_weights_s2.data.normal_(std=1.0 / math.sqrt(self.embedding_size))
def forward(self, train_inputs, train_types, node_neigh):
node_embed = self.node_embeddings[train_inputs]
node_embed_neighbors = self.node_type_embeddings[node_neigh]
node_embed_tmp = torch.cat(
[
node_embed_neighbors[:, i, :, i, :].unsqueeze(1)
for i in range(self.edge_type_count)
],
dim=1,
)
node_type_embed = torch.sum(node_embed_tmp, dim=2)
trans_w = self.trans_weights[train_types]
trans_w_s1 = self.trans_weights_s1[train_types]
trans_w_s2 = self.trans_weights_s2[train_types]
attention = F.softmax(
torch.matmul(
torch.tanh(torch.matmul(node_type_embed, trans_w_s1)), trans_w_s2
).squeeze(2),
dim=1,
).unsqueeze(1)
node_type_embed = torch.matmul(attention, node_type_embed)
node_embed = node_embed + torch.matmul(node_type_embed, trans_w).squeeze(1)
last_node_embed = F.normalize(node_embed, dim=1)
return last_node_embed
class NSLoss(nn.Module):
def __init__(self, num_nodes, num_sampled, embedding_size):
super(NSLoss, self).__init__()
self.num_nodes = num_nodes
self.num_sampled = num_sampled
self.embedding_size = embedding_size
self.weights = Parameter(torch.FloatTensor(num_nodes, embedding_size))
self.sample_weights = F.normalize(
torch.Tensor(
[
(math.log(k + 2) - math.log(k + 1)) / math.log(num_nodes + 1)
for k in range(num_nodes)
]
),
dim=0,
)
self.reset_parameters()
def reset_parameters(self):
self.weights.data.normal_(std=1.0 / math.sqrt(self.embedding_size))
def forward(self, input, embs, label):
n = input.shape[0]
log_target = torch.log(
torch.sigmoid(torch.sum(torch.mul(embs, self.weights[label]), 1))
)
negs = torch.multinomial(
self.sample_weights, self.num_sampled * n, replacement=True
).view(n, self.num_sampled)
noise = torch.neg(self.weights[negs])
sum_log_sampled = torch.sum(
torch.log(torch.sigmoid(torch.bmm(noise, embs.unsqueeze(2)))), 1
).squeeze()
loss = log_target + sum_log_sampled
return -loss.sum() / n
def train_model(network_data):
all_walks = generate_walks(network_data, args.num_walks, args.walk_length, args.schema, file_name)
vocab, index2word = generate_vocab(all_walks)
train_pairs = generate_pairs(all_walks, vocab, args.window_size)
edge_types = list(network_data.keys())
num_nodes = len(index2word)
edge_type_count = len(edge_types)
epochs = args.epoch
batch_size = args.batch_size
embedding_size = args.dimensions
embedding_u_size = args.edge_dim
u_num = edge_type_count
num_sampled = args.negative_samples
dim_a = args.att_dim
att_head = 1
neighbor_samples = args.neighbor_samples
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
neighbors = [[[] for __ in range(edge_type_count)] for _ in range(num_nodes)]
for r in range(edge_type_count):
g = network_data[edge_types[r]]
for (x, y) in g:
ix = vocab[x].index
iy = vocab[y].index
neighbors[ix][r].append(iy)
neighbors[iy][r].append(ix)
for i in range(num_nodes):
if len(neighbors[i][r]) == 0:
neighbors[i][r] = [i] * neighbor_samples
elif len(neighbors[i][r]) < neighbor_samples:
neighbors[i][r].extend(
list(
np.random.choice(
neighbors[i][r],
size=neighbor_samples - len(neighbors[i][r]),
)
)
)
elif len(neighbors[i][r]) > neighbor_samples:
neighbors[i][r] = list(
np.random.choice(neighbors[i][r], size=neighbor_samples)
)
model = GATNEModel(
num_nodes, embedding_size, embedding_u_size, edge_type_count, dim_a
)
nsloss = NSLoss(num_nodes, num_sampled, embedding_size)
model.to(device)
nsloss.to(device)
optimizer = torch.optim.Adam(
[{"params": model.parameters()}, {"params": nsloss.parameters()}], lr=1e-4
)
best_score = 0
patience = 0
for epoch in range(epochs):
random.shuffle(train_pairs)
batches = get_batches(train_pairs, neighbors, batch_size)
data_iter = tqdm.tqdm(
batches,
desc="epoch %d" % (epoch),
total=(len(train_pairs) + (batch_size - 1)) // batch_size,
bar_format="{l_bar}{r_bar}",
)
avg_loss = 0.0
for i, data in enumerate(data_iter):
optimizer.zero_grad()
embs = model(data[0].to(device), data[2].to(device), data[3].to(device),)
loss = nsloss(data[0].to(device), embs, data[1].to(device))
loss.backward()
optimizer.step()
avg_loss += loss.item()
if i % 5000 == 0:
post_fix = {
"epoch": epoch,
"iter": i,
"avg_loss": avg_loss / (i + 1),
"loss": loss.item(),
}
data_iter.write(str(post_fix))
final_model = dict(zip(edge_types, [dict() for _ in range(edge_type_count)]))
for i in range(num_nodes):
train_inputs = torch.tensor([i for _ in range(edge_type_count)]).to(device)
train_types = torch.tensor(list(range(edge_type_count))).to(device)
node_neigh = torch.tensor(
[neighbors[i] for _ in range(edge_type_count)]
).to(device)
node_emb = model(train_inputs, train_types, node_neigh)
for j in range(edge_type_count):
final_model[edge_types[j]][index2word[i]] = (
node_emb[j].cpu().detach().numpy()
)
valid_aucs, valid_f1s, valid_prs = [], [], []
test_aucs, test_f1s, test_prs = [], [], []
for i in range(edge_type_count):
if args.eval_type == "all" or edge_types[i] in args.eval_type.split(","):
tmp_auc, tmp_f1, tmp_pr = evaluate(
final_model[edge_types[i]],
valid_true_data_by_edge[edge_types[i]],
valid_false_data_by_edge[edge_types[i]],
)
valid_aucs.append(tmp_auc)
valid_f1s.append(tmp_f1)
valid_prs.append(tmp_pr)
tmp_auc, tmp_f1, tmp_pr = evaluate(
final_model[edge_types[i]],
testing_true_data_by_edge[edge_types[i]],
testing_false_data_by_edge[edge_types[i]],
)
test_aucs.append(tmp_auc)
test_f1s.append(tmp_f1)
test_prs.append(tmp_pr)
print("valid auc:", np.mean(valid_aucs))
print("valid pr:", np.mean(valid_prs))
print("valid f1:", np.mean(valid_f1s))
average_auc = np.mean(test_aucs)
average_f1 = np.mean(test_f1s)
average_pr = np.mean(test_prs)
cur_score = np.mean(valid_aucs)
if cur_score > best_score:
best_score = cur_score
patience = 0
else:
patience += 1
if patience > args.patience:
print("Early Stopping")
break
return average_auc, average_f1, average_pr
if __name__ == "__main__":
args = parse_args()
file_name = args.input
print(args)
training_data_by_type = load_training_data(file_name + "/train.txt")
valid_true_data_by_edge, valid_false_data_by_edge = load_testing_data(
file_name + "/valid.txt"
)
testing_true_data_by_edge, testing_false_data_by_edge = load_testing_data(
file_name + "/test.txt"
)
average_auc, average_f1, average_pr = train_model(training_data_by_type)
print("Overall ROC-AUC:", average_auc)
print("Overall PR-AUC", average_pr)
print("Overall F1:", average_f1)