-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathpreprocess.py
87 lines (77 loc) · 2.97 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import torch
from torchvision import datasets, transforms
# CIFAR-10,
# mean, [0.4914, 0.4822, 0.4465]
# std, [0.2470, 0.2435, 0.2616]
# CIFAR-100,
# mean, [0.5071, 0.4865, 0.4409]
# std, [0.2673, 0.2564, 0.2762]
def load_data(args):
if args.dataset_mode is "CIFAR10":
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('data', train=True, download=True, transform=transform_train),
batch_size=args.batch_size,
shuffle=True,
num_workers=2
)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('data', train=False, transform=transform_test),
batch_size=args.batch_size,
shuffle=False,
num_workers=2
)
elif args.dataset_mode is "CIFAR100":
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4865, 0.4409), (0.2673, 0.2564, 0.2762)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4865, 0.4409), (0.2673, 0.2564, 0.2762)),
])
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('data', train=True, download=True, transform=transform_train),
batch_size=args.batch_size,
shuffle=True,
num_workers=2
)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('data', train=False, transform=transform_test),
batch_size=args.batch_size,
shuffle=False,
num_workers=2
)
elif args.dataset_mode is "MNIST":
transform_train = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)),
])
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('data', train=True, download=True, transform=transform_train),
batch_size=args.batch_size,
shuffle=True,
num_workers=2
)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('data', train=False, transform=transform_test),
batch_size=args.batch_size,
shuffle=True,
num_workers=2
)
return train_loader, test_loader