Skip to content

Latest commit

 

History

History
 
 

deployment

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

Deploying MLApp

This directory contains manifests for the backend of the mlapp associated with mlbot.net.

This is currently running on a GKE cluster.

See machine-learning-apps/Issue-Label-Bot#57 for a log of how the service was deployed.

To build a new image

skaffold build

Then to update the image

cd overlays/dev|prod
kustomize edit set image gcr.io/github-probots/label-bot-frontend=gcr.io/github-probots/label-bot-frontend:${TAG}@${SHA}

github-probots

There is a dedicated instance running in

  • GCP project: github-probots
  • cluster: kf-ci-ml
  • namespace: mlapp

Deploying it

  1. Create the deployment

    kubectl apply -f deployments.yaml  
    
  2. Create the secret

    gsutil cp gs://github-probots_secrets/ml-app-inference-secret.yaml /tmp
    kubectl apply -f /tmp/ml-app-inference-secret.yaml
    
  3. Create the ingress

    kubectl apply -f ingress.yaml
    

issue-label-bot-dev

There is a staging cluster for testing running in

  • GCP project: github-probots
  • cluster: kf-ci-ml
  • namespace: label-bot-dev

Deploying it

  1. Create the secrets

TODO(jlewi): instructions below are outdated

  1. Create the deployment

    kubectl apply -f deployments-test.yaml  
    
  2. Create the secret

    gsutil cp gs://github-probots_secrets/ml-app-inference-secret-test.yaml /tmp
    kubectl apply -f /tmp/ml-app-inference-secret-test.yaml -n mlapp
    
  3. Create the service

    kubectl apply -f service-test.yaml
    
  4. Create the ingress

    kubectl apply -f ingress-test.yaml