forked from yenchenlin/nerf-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_nerf.py
931 lines (780 loc) · 43 KB
/
run_nerf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
import logging
import os
import time
import imageio
from tqdm import tqdm, trange
from load_LINEMOD import load_LINEMOD_data
from load_blender import load_blender_data
from load_deepvoxels import load_dv_data
from load_llff import load_llff_data
from run_nerf_helpers import *
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
np.random.seed(0)
DEBUG = False
# 配置日志记录器
log_file = "log-{}.txt".format(time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()))
file_handler = logging.FileHandler(log_file)
file_handler.setLevel(logging.INFO)
logger = logging.getLogger()
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
file_handler.setFormatter(formatter)
def batchify(fn, chunk):
"""构建一个适用于较小批次的'fn'的版本。
@:param fn (function): 要应用的函数。
@:param chunk (int): 每个批次的大小。
@:returns function: 适用于较小批次的'fn'的版本。
"""
if chunk is None:
return fn
def ret(inputs):
"""将输入张量分成小的minibatch以避免内存不足。"""
# torch.cat()函数用于连接两个张量,torch.cat((tensor1,tensor2),dim=0)表示按照行的方向进行拼接,dim=1表示按照列的方向进行拼接
return torch.cat([fn(inputs[i:i + chunk]) for i in range(0, inputs.shape[0], chunk)], 0)
return ret
def run_network(inputs, viewdirs, fn, embed_fn, embeddirs_fn, netchunk=1024 * 64):
"""准备输入并应用网络 'fn'。
@:param inputs (torch.Tensor): 输入张量,形状为 [batch_size, ... , input_ch]。
@:param viewdirs (torch.Tensor): 观察方向张量,形状为 [batch_size, ... , input_ch_views]。
@:param fn (torch.nn.Module): 要应用的网络模型。
@:param embed_fn (function): 将输入张量嵌入到特征空间中的函数。
@:param embeddirs_fn (function): 将观察方向张量嵌入到特征空间中的函数。
@:param netchunk (int): 网络处理数据块大小。
@:returns torch.Tensor: 经过网络 fn 处理后的输出张量,形状与输入张量相同。
"""
inputs_flat = torch.reshape(inputs, [-1, inputs.shape[-1]]) # 将输入张量转换为二维张量
embedded = embed_fn(inputs_flat) # 将输入张量嵌入到特征空间中
if viewdirs is not None:
input_dirs = viewdirs[:, None].expand(inputs.shape)
input_dirs_flat = torch.reshape(input_dirs, [-1, input_dirs.shape[-1]])
embedded_dirs = embeddirs_fn(input_dirs_flat)
embedded = torch.cat([embedded, embedded_dirs], -1)
outputs_flat = batchify(fn, netchunk)(embedded)
outputs = torch.reshape(outputs_flat, list(inputs.shape[:-1]) + [outputs_flat.shape[-1]])
return outputs
def batchify_rays(rays_flat, chunk=1024 * 32, **kwargs):
"""将射线分成小的minibatch以避免内存不足。
@:param rays_flat (torch.Tensor): 扁平化的射线张量,形状为[N, 8],N为射线数量,8表示射线起点、方向和长度。
@:param chunk (int): minibatch的大小,默认为1024*32。
@:param **kwargs: 传递给render_rays函数的其他参数。
@:returns dict: 包含所有渲染结果的字典,每个键值对为(名称,张量)。
"""
all_ret = {}
for i in range(0, rays_flat.shape[0], chunk):
ret = render_rays(rays_flat[i:i + chunk], **kwargs)
for k in ret:
if k not in all_ret:
all_ret[k] = []
all_ret[k].append(ret[k])
all_ret = {k: torch.cat(all_ret[k], 0) for k in all_ret}
return all_ret
def render(H, W, K, chunk=1024 * 32, rays=None, c2w=None, ndc=True,
near=0., far=1., use_viewdirs=False, c2w_staticcam=None, **kwargs):
"""渲染光线
@:param H (int): 图像高度。
@:param W (int): 图像宽度。
@:param K (torch.Tensor): 相机内参矩阵,形状为[3, 3]。
@:param chunk (int): minibatch的大小,默认为1024*32。
@:param rays (torch.Tensor): 射线张量,形状为[2, batch_size, 3],batch_size为射线数量,3表示射线起点、方向和长度。
@:param c2w (torch.Tensor): 相机到世界坐标系的变换矩阵,形状为[3, 4]。
@:param ndc (bool): 如果为True,则表示射线起点、方向在NDC坐标系中。
@:param near (float or torch.Tensor): 射线最近距离。
@:param far (float or torch.Tensor): 射线最远距离。
@:param use_viewdirs (bool): 如果为True,则使用空间中点的观察方向。
@:param c2w_staticcam (torch.Tensor): 如果不为None,则使用此变换矩阵。
@:param **kwargs: 传递给render_rays函数的其他参数。
@:returns dict: 包含所有渲染结果的字典,每个键值对为(名称,张量)。
"""
if c2w is not None:
# 特殊情况下渲染整个图像
rays_o, rays_d = get_rays(H, W, K, c2w)
else:
# 使用提供的射线批次
rays_o, rays_d = rays
if use_viewdirs:
# 将射线方向作为输入
viewdirs = rays_d
if c2w_staticcam is not None:
# 特殊情况下可视化视图方向的效果
rays_o, rays_d = get_rays(H, W, K, c2w_staticcam)
viewdirs = viewdirs / torch.norm(viewdirs, dim=-1, keepdim=True)
viewdirs = torch.reshape(viewdirs, [-1, 3]).float()
sh = rays_d.shape # [..., 3]
if ndc:
# for forward facing scenes
rays_o, rays_d = ndc_rays(H, W, K[0][0], 1., rays_o, rays_d)
# Create ray batch
rays_o = torch.reshape(rays_o, [-1, 3]).float()
rays_d = torch.reshape(rays_d, [-1, 3]).float()
near, far = near * torch.ones_like(rays_d[..., :1]), far * torch.ones_like(rays_d[..., :1])
rays = torch.cat([rays_o, rays_d, near, far], -1)
if use_viewdirs:
rays = torch.cat([rays, viewdirs], -1)
# Render and reshape
all_ret = batchify_rays(rays, chunk, **kwargs)
for k in all_ret:
k_sh = list(sh[:-1]) + list(all_ret[k].shape[1:])
all_ret[k] = torch.reshape(all_ret[k], k_sh)
k_extract = ['rgb_map', 'disp_map', 'acc_map']
ret_list = [all_ret[k] for k in k_extract]
ret_dict = {k: all_ret[k] for k in all_ret if k not in k_extract}
return ret_list + [ret_dict]
def render_path(render_poses, hwf, K, chunk, render_kwargs, gt_imgs=None, savedir=None, render_factor=0):
"""渲染路径
@:param render_poses (list): 相机位姿列表。
@:param hwf (list): 图像高度、宽度和焦距。
@:param K (torch.Tensor): 相机内参矩阵,形状为[3, 3]。
@:param chunk (int): minibatch的大小,默认为1024*32。
@:param render_kwargs (dict): 传递给render函数的参数。
@:param gt_imgs (list): 真实图像列表。
@:param savedir (str): 保存渲染结果的路径。
@:param render_factor (int): 渲染因子。
@:returns list: 渲染结果列表。
"""
H, W, focal = hwf # focal为焦距
if render_factor != 0:
# 为了加速,渲染下采样的图像
H = H // render_factor
W = W // render_factor
focal = focal / render_factor
rgbs = []
disps = []
t = time.time()
for i, c2w in enumerate(tqdm(render_poses)):
print(i, time.time() - t)
t = time.time()
rgb, disp, acc, _ = render(H, W, K, chunk=chunk, c2w=c2w[:3, :4], **render_kwargs)
rgbs.append(rgb.cpu().numpy())
disps.append(disp.cpu().numpy())
if i == 0:
print(rgb.shape, disp.shape)
"""
if gt_imgs is not None and render_factor==0:
p = -10. * np.log10(np.mean(np.square(rgb.cpu().numpy() - gt_imgs[i])))
print(p)
"""
if savedir is not None:
rgb8 = to8b(rgbs[-1])
filename = os.path.join(savedir, '{:03d}.png'.format(i))
imageio.imwrite(filename, rgb8)
rgbs = np.stack(rgbs, 0)
disps = np.stack(disps, 0)
return rgbs, disps
def create_nerf(args):
"""创建NeRF的多层感知器模型
@:param args (argparse.Namespace): 参数。
@:return render_kwargs_train (dict): 用于训练的参数。
@:return render_kwargs_test (dict): 用于测试的参数。
@:return start (int): 训练开始的迭代次数。
@:return grad_vars (list): 需要计算梯度的变量列表。
@:return models (dict): 模型字典。
"""
# 获取embedding函数和输入通道数(from run_nerf_helpers.py)
embed_fn, input_ch = get_embedder(args.multires, args.i_embed)
# 初始化视点embedding函数和输入通道数
input_ch_views = 0 # 输入通道数
embeddirs_fn = None # embedding函数
if args.use_viewdirs: # 如果使用视点方向,获取embedding函数和输入通道数
embeddirs_fn, input_ch_views = get_embedder(args.multires_views, args.i_embed)
# 输出通道数(如果使用fine模型,则输出通道数为5,否则为4)
output_ch = 5 if args.N_importance > 0 else 4
skips = [4]
# 创建NeRF模型
model = NeRF(D=args.netdepth, W=args.netwidth, # 网络深度和宽度
input_ch=input_ch, output_ch=output_ch, # 输入输出通道数
skips=skips, # 跳层
input_ch_views=input_ch_views, # 视点输入通道数
use_viewdirs=args.use_viewdirs).to(device) # 是否使用视点方向
grad_vars = list(model.parameters()) # 获取需要优化的参数
# 如果使用了fine模型,则创建fine模型
model_fine = None
if args.N_importance > 0: # 如果使用了fine模型
model_fine = NeRF(D=args.netdepth_fine, W=args.netwidth_fine, # fine模型的网络深度和宽度
input_ch=input_ch, output_ch=output_ch, # 输入输出通道数
skips=skips, # 跳层
input_ch_views=input_ch_views, # 视点输入通道数
use_viewdirs=args.use_viewdirs).to(device) # 是否使用视点方向
grad_vars += list(model_fine.parameters())
# 定义网络查询函数
network_query_fn = lambda inputs, viewdirs, network_fn: run_network(inputs=inputs, # 输入图像坐标
viewdirs=viewdirs, # 视点方向
fn=network_fn, # 网络函数
embed_fn=embed_fn, # embedding函数
embeddirs_fn=embeddirs_fn, # 视点embedding函数
netchunk=args.netchunk) # minibatch大小
# 创建优化器
optimizer = torch.optim.Adam(params=grad_vars, lr=args.lrate, betas=(0.9, 0.999)) # Adam优化器
start = 0 # start:1. 用于记录训练的步数;2. 用于记录fine-tune的步数;3. 用于记录加载的检查点的步数。
basedir = args.basedir
expname = args.expname
##########################
# 加载检查点
if args.ft_path is not None and args.ft_path != 'None': # 如果指定了fine-tune的路径,则加载该路径下的检查点
ckpts = [args.ft_path]
else: # 否则加载basedir/expname下的检查点
ckpts = [os.path.join(basedir, expname, f) for f in sorted(os.listdir(os.path.join(basedir, expname))) if
'tar' in f]
print('Found ckpts', ckpts)
if len(ckpts) > 0 and not args.no_reload: # 如果存在检查点且不禁止加载检查点,则加载最新的检查点
ckpt_path = ckpts[-1]
print('Reloading from', ckpt_path)
ckpt = torch.load(ckpt_path)
start = ckpt['global_step']
optimizer.load_state_dict(ckpt['optimizer_state_dict'])
# 加载模型
model.load_state_dict(ckpt['network_fn_state_dict'])
if model_fine is not None:
model_fine.load_state_dict(ckpt['network_fine_state_dict'])
##########################
# 创建渲染参数
render_kwargs_train = {
'network_query_fn': network_query_fn,
'perturb': args.perturb,
'N_importance': args.N_importance,
'network_fine': model_fine,
'N_samples': args.N_samples,
'network_fn': model,
'use_viewdirs': args.use_viewdirs,
'white_bkgd': args.white_bkgd,
'raw_noise_std': args.raw_noise_std,
}
# 只有LLFF格式的前向数据才适用NDC
if args.dataset_type != 'llff' or args.no_ndc:
print('Not ndc!')
render_kwargs_train['ndc'] = False
render_kwargs_train['lindisp'] = args.lindisp
render_kwargs_test = {k: render_kwargs_train[k] for k in render_kwargs_train}
render_kwargs_test['perturb'] = False
render_kwargs_test['raw_noise_std'] = 0.
return render_kwargs_train, render_kwargs_test, start, grad_vars, optimizer
def raw2outputs(raw, z_vals, rays_d, raw_noise_std=0, white_bkgd=False, pytest=False):
"""转换模型的预测值到语义上的有意义的值
@:param raw: [num_rays, num_samples along ray, 4]. 模型的预测值
@:param z_vals: [num_rays, num_samples along ray]. 集成时间
@:param rays_d: [num_rays, 3]. 每个射线的方向
@:param raw_noise_std: 标准差
@:param white_bkgd: 是否使用白色背景
@:param pytest: 是否使用pytest
@:return rgb_map: [num_rays, 3]. 射线的估计RGB颜色
@:return disp_map: [num_rays]. 射线的估计深度
@:return acc_map: [num_rays]. 射线的估计透明度
@:return weights: [num_rays, num_samples along ray]. 射线的权重
@:return depth_map: [num_rays]. 射线的估计深度
"""
# 使用激活函数将raw转换为alpha
# raw:模型的预测值, dists:集成时间, act_fn:激活函数
raw2alpha = lambda raw, dists, act_fn=F.relu: 1. - torch.exp(-act_fn(raw) * dists)
# 加工dists方法:将dists的最后一个元素设置为1e10
dists = z_vals[..., 1:] - z_vals[..., :-1] # dists是两个集成时间之间的距离
# expand(dists[..., :1].shape): 将dists[..., :1]的shape扩展为dists[..., :1].shape
# cat: 将dists和1e10拼接在一起
dists = torch.cat([dists, torch.Tensor([1e10]).expand(dists[..., :1].shape)], -1) # 将dists的最后一个元素设置为1e10
dists = dists * torch.norm(rays_d[..., None, :], dim=-1) # 将dists乘以射线的方向
rgb = torch.sigmoid(raw[..., :3])
noise = 0.
if raw_noise_std > 0.:
noise = torch.randn(raw[..., 3].shape) * raw_noise_std
if pytest: # 如果使用pytest,则覆盖随机采样的数据
np.random.seed(0) # 随机种子
noise = np.random.rand(*list(raw[..., 3].shape)) * raw_noise_std # 生成随机数
noise = torch.Tensor(noise) # 转换为tensor
alpha = raw2alpha(raw[..., 3] + noise, dists) # 将raw转换为alpha
# weights = alpha * tf.math.cumprod(1.-alpha + 1e-10, -1, exclusive=True)
# 计算射线的权重, cumprod:计算累积乘积
weights = alpha * torch.cumprod(torch.cat([torch.ones((alpha.shape[0], 1)), 1. - alpha + 1e-10], -1), -1)[:, :-1]
rgb_map = torch.sum(weights[..., None] * rgb, -2) # 计算射线的估计RGB颜色
depth_map = torch.sum(weights * z_vals, -1)
disp_map = 1. / torch.max(1e-10 * torch.ones_like(depth_map), depth_map / torch.sum(weights, -1))
acc_map = torch.sum(weights, -1)
# 如果使用白色背景,则将rgb_map和(1. - acc_map[..., None])相加,这样就可以得到白色背景
# 因为acc_map是射线的透明度,acc_map越大,说明射线越透明,也就是说射线越接近白色
# 所以rgb_map和(1. - acc_map[..., None])相加,就可以得到白色背景
if white_bkgd:
rgb_map = rgb_map + (1. - acc_map[..., None])
return rgb_map, disp_map, acc_map, weights, depth_map
def render_rays(ray_batch, network_fn, network_query_fn, N_samples, retraw=False, lindisp=False, perturb=0.,
N_importance=0, network_fine=None, white_bkgd=False, raw_noise_std=0., verbose=False, pytest=False):
"""体积渲染:从光线批次中渲染图像
@:param ray_batch: [batch_size, ...]. 所有必要的信息,包括:光线原点、光线方向、最小距离、最大距离和单位化的视图方向
@:param network_fn: 模型,用于预测每个空间点的RGB和密度
@:param network_query_fn: 用于将查询传递给network_fn的函数
@:param N_samples: int. 每条光线采样的次数
@:param retraw: bool. 如果为True,则包括模型的原始、未处理的预测
@:param lindisp: bool. 如果为True,则以相反深度的线性方式采样,而不是以深度采样
@:param perturb: float, 0 or 1. 如果非零,则每条光线在时间上以分层随机点采样
@:param N_importance: int. 每条光线额外采样的次数。这些样本仅传递给network_fine
@:param network_fine: "fine" 用于优化的网络:如果不为None,则使用它来重新采样光线
@:param white_bkgd: bool. 如果为True,则将背景设置为白色
@:param raw_noise_std: float. 如果不为0,则在网络输出上添加噪声
@:param verbose: bool. 如果为True,则打印有关渲染的信息
@:param pytest: bool. 如果为True,则使用固定的随机种子
@:return ret:
rgb0: rgb_map: [num_rays, 3]. 估算出的射线的RGB颜色。来自于精细模型。
disp0: disp_map: [num_rays]. 差距图。1/深度。
acc0: acc_map: [num_rays]. 沿着每条射线累积的不透明度。来自于精细模型。
z_std: [num_rays]. 每个样本的沿射线距离的标准偏差。N_rays = ray_batch.shape[0]
"""
N_rays = ray_batch.shape[0]
rays_o, rays_d = ray_batch[:, 0:3], ray_batch[:, 3:6]
viewdirs = ray_batch[:, -3:] if ray_batch.shape[-1] > 8 else None
bounds = torch.reshape(ray_batch[..., 6:8], [-1, 1, 2])
near, far = bounds[..., 0], bounds[..., 1] # [-1,1]
t_vals = torch.linspace(0., 1., steps=N_samples) # t_vals是[0,1]之间的等差数列
if not lindisp: # 如果不是以相反深度的线性方式采样,而是以深度采样
z_vals = near * (1. - t_vals) + far * (t_vals) # 深度是[far,near]之间的等差数列
else:
z_vals = 1. / (1. / near * (1. - t_vals) + 1. / far * (t_vals))
z_vals = z_vals.expand([N_rays, N_samples])
# z_vals是[0,1]之间的等差数列,但是是以深度的形式呈现的,而不是以相反深度的形式呈现的
if perturb > 0.: # 如果perturb > 0,则在每个射线上以分层随机点采样
mids = .5 * (z_vals[..., 1:] + z_vals[..., :-1]) # 计算每个间隔的中间值
upper = torch.cat([mids, z_vals[..., -1:]], -1) # 将最后一个z值复制到upper中
lower = torch.cat([z_vals[..., :1], mids], -1) # 将第一个z值复制到lower中
# 在这些间隔中进行分层采样
t_rand = torch.rand(z_vals.shape)
# 使用numpy的固定随机数覆盖u
if pytest:
np.random.seed(0)
t_rand = np.random.rand(*list(z_vals.shape))
t_rand = torch.Tensor(t_rand)
z_vals = lower + (upper - lower) * t_rand
pts = rays_o[..., None, :] + rays_d[..., None, :] * z_vals[..., :, None]
# raw = run_network(pts)
raw = network_query_fn(pts, viewdirs, network_fn)
rgb_map, disp_map, acc_map, weights, depth_map = raw2outputs(raw, z_vals, rays_d, raw_noise_std, white_bkgd,
pytest=pytest)
if N_importance > 0: # 如果N_importance > 0,则在每个射线上额外采样N_importance个点
rgb_map_0, disp_map_0, acc_map_0 = rgb_map, disp_map, acc_map # 保存粗糙模型的结果
# 计算每个间隔的中间值
z_vals_mid = .5 * (z_vals[..., 1:] + z_vals[..., :-1])
# 在每个间隔中进行分层采样
z_samples = sample_pdf(z_vals_mid, weights[..., 1:-1], N_importance, det=(perturb == 0.), pytest=pytest)
z_samples = z_samples.detach() # detach()函数将张量从计算图中分离出来,防止梯度传播
z_vals, _ = torch.sort(torch.cat([z_vals, z_samples], -1), -1)
pts = rays_o[..., None, :] + rays_d[..., None, :] * z_vals[..., :, None]
run_fn = network_fn if network_fine is None else network_fine
# raw = run_network(pts, fn=run_fn)
raw = network_query_fn(pts, viewdirs, run_fn)
rgb_map, disp_map, acc_map, weights, depth_map = raw2outputs(raw, z_vals, rays_d, raw_noise_std, white_bkgd,
pytest=pytest)
ret = {'rgb_map': rgb_map, 'disp_map': disp_map, 'acc_map': acc_map}
if retraw:
ret['raw'] = raw
if N_importance > 0:
ret['rgb0'] = rgb_map_0
ret['disp0'] = disp_map_0
ret['acc0'] = acc_map_0
ret['z_std'] = torch.std(z_samples, dim=-1, unbiased=False) # [N_rays]
for k in ret:
if (torch.isnan(ret[k]).any() or torch.isinf(ret[k]).any()) and DEBUG:
print(f"! [Numerical Error] {k} contains nan or inf.")
return ret
def config_parser():
"""解析命令行参数和flag"""
import configargparse
parser = configargparse.ArgumentParser()
parser.add_argument('--config', is_config_file=True,
help='config file path')
parser.add_argument("--expname", type=str,
help='experiment name')
parser.add_argument("--basedir", type=str, default='./logs/',
help='where to store ckpts and logs')
parser.add_argument("--datadir", type=str, default='./data/llff/fern',
help='input data directory')
# training options
parser.add_argument("--netdepth", type=int, default=8,
help='layers in network')
parser.add_argument("--netwidth", type=int, default=256,
help='channels per layer')
parser.add_argument("--netdepth_fine", type=int, default=8,
help='layers in fine network')
parser.add_argument("--netwidth_fine", type=int, default=256,
help='channels per layer in fine network')
parser.add_argument("--N_rand", type=int, default=32 * 32 * 4,
help='batch size (number of random rays per gradient step)')
parser.add_argument("--lrate", type=float, default=5e-4,
help='learning rate')
parser.add_argument("--lrate_decay", type=int, default=250,
help='exponential learning rate decay (in 1000 steps)')
parser.add_argument("--chunk", type=int, default=1024 * 32,
help='number of rays processed in parallel, decrease if running out of memory')
parser.add_argument("--netchunk", type=int, default=1024 * 64,
help='number of pts sent through network in parallel, decrease if running out of memory')
parser.add_argument("--no_batching", action='store_true',
help='only take random rays from 1 image at a time')
parser.add_argument("--no_reload", action='store_true',
help='do not reload weights from saved ckpt')
parser.add_argument("--ft_path", type=str, default=None,
help='specific weights npy file to reload for coarse network')
# rendering options
parser.add_argument("--N_samples", type=int, default=64,
help='number of coarse samples per ray')
parser.add_argument("--N_importance", type=int, default=0,
help='number of additional fine samples per ray')
parser.add_argument("--perturb", type=float, default=1.,
help='set to 0. for no jitter, 1. for jitter')
parser.add_argument("--use_viewdirs", action='store_true',
help='use full 5D input instead of 3D')
parser.add_argument("--i_embed", type=int, default=0,
help='set 0 for default positional encoding, -1 for none')
parser.add_argument("--multires", type=int, default=10,
help='log2 of max freq for positional encoding (3D location)')
parser.add_argument("--multires_views", type=int, default=4,
help='log2 of max freq for positional encoding (2D direction)')
parser.add_argument("--raw_noise_std", type=float, default=0.,
help='std dev of noise added to regularize sigma_a output, 1e0 recommended')
parser.add_argument("--render_only", action='store_true',
help='do not optimize, reload weights and render out render_poses path')
parser.add_argument("--render_test", action='store_true',
help='render the test set instead of render_poses path')
parser.add_argument("--render_factor", type=int, default=0,
help='downsampling factor to speed up rendering, set 4 or 8 for fast preview')
# training options
parser.add_argument("--precrop_iters", type=int, default=0,
help='number of steps to train on central crops')
parser.add_argument("--precrop_frac", type=float,
default=.5, help='fraction of img taken for central crops')
# dataset options
parser.add_argument("--dataset_type", type=str, default='llff',
help='options: llff / blender / deepvoxels')
parser.add_argument("--testskip", type=int, default=8,
help='will load 1/N images from test/val sets, useful for large datasets like deepvoxels')
## deepvoxels flags
parser.add_argument("--shape", type=str, default='greek',
help='options : armchair / cube / greek / vase')
## blender flags
parser.add_argument("--white_bkgd", action='store_true',
help='set to render synthetic data on a white bkgd (always use for dvoxels)')
parser.add_argument("--half_res", action='store_true',
help='load blender synthetic data at 400x400 instead of 800x800')
## llff flags
parser.add_argument("--factor", type=int, default=8,
help='downsample factor for LLFF images')
parser.add_argument("--no_ndc", action='store_true',
help='do not use normalized device coordinates (set for non-forward facing scenes)')
parser.add_argument("--lindisp", action='store_true',
help='sampling linearly in disparity rather than depth')
parser.add_argument("--spherify", action='store_true',
help='set for spherical 360 scenes')
parser.add_argument("--llffhold", type=int, default=8,
help='will take every 1/N images as LLFF test set, paper uses 8')
# logging/saving options
parser.add_argument("--i_print", type=int, default=100,
help='frequency of console printout and metric loggin')
parser.add_argument("--i_img", type=int, default=500,
help='frequency of tensorboard image logging')
parser.add_argument("--i_weights", type=int, default=10000,
help='frequency of weight ckpt saving')
parser.add_argument("--i_testset", type=int, default=50000,
help='frequency of testset saving')
parser.add_argument("--i_video", type=int, default=50000,
help='frequency of render_poses video saving')
return parser
def train():
"""训练函数"""
parser = config_parser()
args = parser.parse_args()
# 加载数据
K = None
if args.dataset_type == 'llff': # 如果是llff格式的数据集
# 加载图片、相机位姿、相机焦距、渲染相机位姿、测试图片的索引
images, poses, bds, render_poses, i_test = load_llff_data(args.datadir, args.factor,
recenter=True, bd_factor=.75,
spherify=args.spherify)
# 获取相机参数
hwf = poses[0, :3, -1]
# 从poses数组中提取出旋转和平移信息
poses = poses[:, :3, :4]
print(f"Loaded llff, img:{images.shape}, render poses{render_poses.shape}, hwf:{hwf}, datadir:{args.datadir}")
# 如果i_test不是一个列表,将其转化为列表形式
if not isinstance(i_test, list):
i_test = [i_test]
# 根据llffhold的值来分割数据集
if args.llffhold > 0:
print('Auto LLFF holdout,', args.llffhold)
i_test = np.arange(images.shape[0])[::args.llffhold]
# 确定训练集、验证集和测试集的索引
i_val = i_test
i_train = np.array([i for i in np.arange(int(images.shape[0])) if
(i not in i_test and i not in i_val)])
# 定义场景的空间范围(near和far)
print('DEFINING BOUNDS')
if args.no_ndc: # 如果不使用归一化坐标系,使用数据集中深度范围的90%作为near,深度范围的最大值作为far
near = np.ndarray.min(bds) * .9
far = np.ndarray.max(bds) * 1.
else: # 否则near为0,far为1
near = 0.
far = 1.
print('NEAR FAR', near, far)
elif args.dataset_type == 'blender':
images, poses, render_poses, hwf, i_split = load_blender_data(args.datadir, args.half_res, args.testskip)
print('Loaded blender', images.shape, render_poses.shape, hwf, args.datadir)
i_train, i_val, i_test = i_split
near = 2.
far = 6.
if args.white_bkgd:
images = images[..., :3] * images[..., -1:] + (1. - images[..., -1:])
else:
images = images[..., :3]
elif args.dataset_type == 'LINEMOD':
images, poses, render_poses, hwf, K, i_split, near, far = load_LINEMOD_data(args.datadir, args.half_res,
args.testskip)
print(f'Loaded LINEMOD, images shape: {images.shape}, hwf: {hwf}, K: {K}')
print(f'[CHECK HERE] near: {near}, far: {far}.')
i_train, i_val, i_test = i_split
if args.white_bkgd:
images = images[..., :3] * images[..., -1:] + (1. - images[..., -1:])
else:
images = images[..., :3]
elif args.dataset_type == 'deepvoxels':
images, poses, render_poses, hwf, i_split = load_dv_data(scene=args.shape,
basedir=args.datadir,
testskip=args.testskip)
print('Loaded deepvoxels', images.shape, render_poses.shape, hwf, args.datadir)
i_train, i_val, i_test = i_split
hemi_R = np.mean(np.linalg.norm(poses[:, :3, -1], axis=-1))
near = hemi_R - 1.
far = hemi_R + 1.
else:
print('Unknown dataset type', args.dataset_type, 'exiting')
return
# 将相机内参转换为正确的数据类型
H, W, focal = hwf # 相机成像高、宽、焦距
H, W = int(H), int(W)
hwf = [H, W, focal]
# 如果K为空,使用默认相机内参(LINEMOD 数据带有相机内参矩阵K)
if K is None:
K = np.array([
[focal, 0, 0.5 * W],
[0, focal, 0.5 * H],
[0, 0, 1]
])
# 如果需要渲染测试集中的图片,则使用测试集的相机位姿
if args.render_test:
render_poses = np.array(poses[i_test])
# 创建日志目录,将命令行参数和配置文件写入日志目录中
basedir = args.basedir # 日志目录
expname = args.expname # 实验名称
os.makedirs(os.path.join(basedir, expname), exist_ok=True) # 如果目录不存在,则创建一个日志目录
f = os.path.join(basedir, expname, 'args.txt') # 存储命令行参数的文本文件的路径
with open(f, 'w') as file:
for arg in sorted(vars(args)):
attr = getattr(args, arg)
file.write('{} = {}\n'.format(arg, attr)) # 将每个命令行参数和其值写入文本文件中
if args.config is not None:
f = os.path.join(basedir, expname, 'config.txt') # 存储配置文件的文本文件的路径
with open(f, 'w') as file:
file.write(open(args.config, 'r').read()) # 将配置文件内容写入文本文件中
# 创建NERF模型
render_kwargs_train, render_kwargs_test, start, grad_vars, optimizer = create_nerf(args)
global_step = start
# 定义场景空间范围
bds_dict = {
'near': near,
'far': far,
}
# 将场景空间范围加入渲染参数
render_kwargs_train.update(bds_dict)
render_kwargs_test.update(bds_dict)
# 将测试数据移动到GPU上
render_poses = torch.Tensor(render_poses).to(device)
# 如果只是从已经训练好的模型中进行渲染,则直接进行渲染
if args.render_only:
print('RENDER ONLY')
with torch.no_grad():
if args.render_test:
# 使用测试集的数据进行渲染
images = images[i_test]
else:
# 默认使用较为平滑的渲染路径
images = None
# 定义渲染结果的保存目录
testsavedir = os.path.join(basedir, expname,
'renderonly_{}_{:06d}'.format('test' if args.render_test else 'path', start))
os.makedirs(testsavedir, exist_ok=True)
print('test poses shape', render_poses.shape)
# 渲染路径,并将结果保存在testsavedir中
rgbs, _ = render_path(render_poses, hwf, K, args.chunk, render_kwargs_test, gt_imgs=images,
savedir=testsavedir, render_factor=args.render_factor)
print('Done rendering', testsavedir)
# 将渲染结果保存为mp4格式视频
imageio.mimwrite(os.path.join(testsavedir, 'video.mp4'), to8b(rgbs), fps=30, quality=8)
return
# 如果使用随机光线批处理,则准备光线批处理张量
N_rand = args.N_rand
use_batching = not args.no_batching
if use_batching:
# 从训练集中随机选择N_rand个图像
print('get rays')
rays = np.stack([get_rays_np(H, W, K, p) for p in poses[:, :3, :4]], 0) # [N, ro+rd, H, W, 3]
print('done, concats')
rays_rgb = np.concatenate([rays, images[:, None]], 1) # [N, ro+rd+rgb, H, W, 3]
rays_rgb = np.transpose(rays_rgb, [0, 2, 3, 1, 4]) # [N, H, W, ro+rd+rgb, 3]
rays_rgb = np.stack([rays_rgb[i] for i in i_train], 0) # train images only
rays_rgb = np.reshape(rays_rgb, [-1, 3, 3]) # [(N-1)*H*W, ro+rd+rgb, 3]
rays_rgb = rays_rgb.astype(np.float32) # [N, H, W, ro+rd+rgb, 3]
print('shuffle rays')
np.random.shuffle(rays_rgb)
print('done')
i_batch = 0
# 将训练数据移动到GPU上
if use_batching:
images = torch.Tensor(images).to(device) # [N, H, W, 3]
poses = torch.Tensor(poses).to(device)
if use_batching:
rays_rgb = torch.Tensor(rays_rgb).to(device)
N_iters = 200000 + 1
print('Begin')
print('TRAIN views are', i_train)
print('TEST views are', i_test)
print('VAL views are', i_val)
# Summary writers
# writer = SummaryWriter(os.path.join(basedir, 'summaries', expname))
start = start + 1
for i in trange(start, N_iters):
time0 = time.time()
# Sample random ray batch
if use_batching:
# Random over all images
batch = rays_rgb[i_batch:i_batch + N_rand] # [B, 2+1, 3*?]
batch = torch.transpose(batch, 0, 1)
batch_rays, target_s = batch[:2], batch[2]
i_batch += N_rand
if i_batch >= rays_rgb.shape[0]:
print("Shuffle data after an epoch!")
rand_idx = torch.randperm(rays_rgb.shape[0])
rays_rgb = rays_rgb[rand_idx]
i_batch = 0
else:
# Random from one image
img_i = np.random.choice(i_train)
target = images[img_i]
target = torch.Tensor(target).to(device)
pose = poses[img_i, :3, :4]
if N_rand is not None:
rays_o, rays_d = get_rays(H, W, K, torch.Tensor(pose)) # (H, W, 3), (H, W, 3)
if i < args.precrop_iters:
dH = int(H // 2 * args.precrop_frac)
dW = int(W // 2 * args.precrop_frac)
coords = torch.stack(
torch.meshgrid(
torch.linspace(H // 2 - dH, H // 2 + dH - 1, 2 * dH),
torch.linspace(W // 2 - dW, W // 2 + dW - 1, 2 * dW)
), -1)
if i == start:
print(
f"[Config] Center cropping of size {2 * dH} x {2 * dW} is enabled until iter {args.precrop_iters}")
else:
coords = torch.stack(torch.meshgrid(torch.linspace(0, H - 1, H), torch.linspace(0, W - 1, W)),
-1) # (H, W, 2)
coords = torch.reshape(coords, [-1, 2]) # (H * W, 2)
select_inds = np.random.choice(coords.shape[0], size=[N_rand], replace=False) # (N_rand,)
select_coords = coords[select_inds].long() # (N_rand, 2)
rays_o = rays_o[select_coords[:, 0], select_coords[:, 1]] # (N_rand, 3)
rays_d = rays_d[select_coords[:, 0], select_coords[:, 1]] # (N_rand, 3)
batch_rays = torch.stack([rays_o, rays_d], 0)
target_s = target[select_coords[:, 0], select_coords[:, 1]] # (N_rand, 3)
##### Core optimization loop #####
rgb, disp, acc, extras = render(H, W, K, chunk=args.chunk, rays=batch_rays,
verbose=i < 10, retraw=True,
**render_kwargs_train)
optimizer.zero_grad()
img_loss = img2mse(rgb, target_s)
trans = extras['raw'][..., -1]
loss = img_loss
psnr = mse2psnr(img_loss)
if 'rgb0' in extras:
img_loss0 = img2mse(extras['rgb0'], target_s)
loss = loss + img_loss0
psnr0 = mse2psnr(img_loss0)
loss.backward()
optimizer.step()
# NOTE: IMPORTANT!
### update learning rate ###
# 设置衰减率和衰减步数
decay_rate = 0.1
decay_steps = args.lrate_decay * 1000
# 根据全局步数计算新的学习率
new_lrate = args.lrate * (decay_rate ** (global_step / decay_steps))
# 更新优化器中所有参数组的学习率
for param_group in optimizer.param_groups:
param_group['lr'] = new_lrate
# 注意:重要提示!
### 更新学习率 ###
衰减率 = 0.1
衰减步数 = args.lrate_decay * 1000
新学习率 = args.lrate * (衰减率 ** (global_step / 衰减步数))
for param_group in optimizer.param_groups:
param_group['lr'] = new_lrate
################################
dt = time.time() - time0
# print(f"Step: {global_step}, Loss: {loss}, Time: {dt}")
##### end #####
# Rest is logging
if i % args.i_weights == 0:
path = os.path.join(basedir, expname, '{:06d}.tar'.format(i))
torch.save({
'global_step': global_step,
'network_fn_state_dict': render_kwargs_train['network_fn'].state_dict(),
'network_fine_state_dict': render_kwargs_train['network_fine'].state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, path)
print('Saved checkpoints at', path)
if i % args.i_video == 0 and i > 0:
# Turn on testing mode
with torch.no_grad():
rgbs, disps = render_path(render_poses, hwf, K, args.chunk, render_kwargs_test)
print('Done, saving', rgbs.shape, disps.shape)
moviebase = os.path.join(basedir, expname, '{}_spiral_{:06d}_'.format(expname, i))
imageio.mimwrite(moviebase + 'rgb.mp4', to8b(rgbs), fps=30, quality=8)
imageio.mimwrite(moviebase + 'disp.mp4', to8b(disps / np.max(disps)), fps=30, quality=8)
# if args.use_viewdirs:
# render_kwargs_test['c2w_staticcam'] = render_poses[0][:3,:4]
# with torch.no_grad():
# rgbs_still, _ = render_path(render_poses, hwf, args.chunk, render_kwargs_test)
# render_kwargs_test['c2w_staticcam'] = None
# imageio.mimwrite(moviebase + 'rgb_still.mp4', to8b(rgbs_still), fps=30, quality=8)
if i % args.i_testset == 0 and i > 0:
testsavedir = os.path.join(basedir, expname, 'testset_{:06d}'.format(i))
os.makedirs(testsavedir, exist_ok=True)
print('test poses shape', poses[i_test].shape)
with torch.no_grad():
render_path(torch.Tensor(poses[i_test]).to(device), hwf, K, args.chunk, render_kwargs_test,
gt_imgs=images[i_test], savedir=testsavedir)
print('Saved test set')
if i % args.i_print == 0:
tqdm.write(f"[TRAIN] Iter: {i} Loss: {loss.item()} PSNR: {psnr.item()}")
"""
print(expname, i, psnr.numpy(), loss.numpy(), global_step.numpy())
print('iter time {:.05f}'.format(dt))
with tf.contrib.summary.record_summaries_every_n_global_steps(args.i_print):
tf.contrib.summary.scalar('loss', loss)
tf.contrib.summary.scalar('psnr', psnr)
tf.contrib.summary.histogram('tran', trans)
if args.N_importance > 0:
tf.contrib.summary.scalar('psnr0', psnr0)
if i%args.i_img==0:
# Log a rendered validation view to Tensorboard
img_i=np.random.choice(i_val)
target = images[img_i]
pose = poses[img_i, :3,:4]
with torch.no_grad():
rgb, disp, acc, extras = render(H, W, focal, chunk=args.chunk, c2w=pose,
**render_kwargs_test)
psnr = mse2psnr(img2mse(rgb, target))
with tf.contrib.summary.record_summaries_every_n_global_steps(args.i_img):
tf.contrib.summary.image('rgb', to8b(rgb)[tf.newaxis])
tf.contrib.summary.image('disp', disp[tf.newaxis,...,tf.newaxis])
tf.contrib.summary.image('acc', acc[tf.newaxis,...,tf.newaxis])
tf.contrib.summary.scalar('psnr_holdout', psnr)
tf.contrib.summary.image('rgb_holdout', target[tf.newaxis])
if args.N_importance > 0:
with tf.contrib.summary.record_summaries_every_n_global_steps(args.i_img):
tf.contrib.summary.image('rgb0', to8b(extras['rgb0'])[tf.newaxis])
tf.contrib.summary.image('disp0', extras['disp0'][tf.newaxis,...,tf.newaxis])
tf.contrib.summary.image('z_std', extras['z_std'][tf.newaxis,...,tf.newaxis])
"""
global_step += 1
if __name__ == '__main__':
torch.set_default_tensor_type('torch.cuda.FloatTensor')
train()