-
Notifications
You must be signed in to change notification settings - Fork 756
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adding Pachyderm Example (squashed) (#522)
* Adding Pachyderm Example (squashed) * Add Dan Sanche to OWNERS (#520) Fixed tf_operator import for github_issue_summarization example (#527) * fixed tf_operator import * updated tf-operator import path * small change * updated PYTHONPATH * fixed syntax error * formating issue Mnist pipelines (#524) * added mnist pipelines sample * fixed lint issues
- Loading branch information
1 parent
895e88b
commit 52795bc
Showing
18 changed files
with
7,156 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
{ | ||
"pipeline": { | ||
"name": "build" | ||
}, | ||
"transform": { | ||
"image": "seldonio/core-python-wrapper:0.7", | ||
"cmd": [ "/bin/bash" ], | ||
"stdin": [ | ||
"mkdir /my_model", | ||
"cp /pfs/pre_process/*.dpkl /my_model", | ||
"cp /pfs/train/* /my_model", | ||
"python wrap_model.py /my_model IssueSummarization $PACH_JOB_ID pachyderm --out-folder=/pfs/out --base-image=python:3.6" | ||
] | ||
}, | ||
"input": { | ||
"cross": [ | ||
{ | ||
"atom": { | ||
"repo": "train", | ||
"glob": "/" | ||
} | ||
}, | ||
{ | ||
"atom": { | ||
"repo": "pre_process", | ||
"glob": "/" | ||
} | ||
} | ||
] | ||
} | ||
} |
24 changes: 24 additions & 0 deletions
24
github_issue_summarization/Pachyderm_Example/code/Dockerfile
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
FROM python:3.6 | ||
RUN apt-get update && apt-get install -y --no-install-recommends \ | ||
python-pandas \ | ||
&& pip3 install -U scikit-learn \ | ||
&& pip3 install -U ktext \ | ||
&& pip3 install -U IPython \ | ||
&& pip3 install -U annoy \ | ||
&& pip3 install -U tqdm \ | ||
&& pip3 install -U nltk \ | ||
&& pip3 install -U matplotlib \ | ||
&& pip3 install -U tensorflow \ | ||
&& pip3 install -U bernoulli \ | ||
&& pip3 install -U h5py \ | ||
&& git clone https://github.com/google/seq2seq.git \ | ||
&& pip3 install -e ./seq2seq/ \ | ||
&& apt-get clean \ | ||
&& rm -rf \ | ||
/var/lib/apt/lists/* \ | ||
/tmp/* \ | ||
/var/tmp/* \ | ||
/usr/share/man \ | ||
/usr/share/doc \ | ||
/usr/share/doc-base | ||
COPY . /workspace/src/ |
35 changes: 35 additions & 0 deletions
35
github_issue_summarization/Pachyderm_Example/code/IssueSummarization.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
"""Generates predictions using a stored model. | ||
Uses trained model files to generate a prediction. | ||
""" | ||
|
||
from __future__ import print_function | ||
|
||
import os | ||
|
||
import numpy as np | ||
import dill as dpickle | ||
from keras.models import load_model | ||
from seq2seq_utils import Seq2Seq_Inference | ||
|
||
class IssueSummarization(object): | ||
|
||
def __init__(self): | ||
body_pp_file = os.getenv('BODY_PP_FILE', 'body_preprocessor.dpkl') | ||
print('body_pp file {0}'.format(body_pp_file)) | ||
with open(body_pp_file, 'rb') as body_file: | ||
body_pp = dpickle.load(body_file) | ||
|
||
title_pp_file = os.getenv('TITLE_PP_FILE', 'title_preprocessor.dpkl') | ||
print('title_pp file {0}'.format(title_pp_file)) | ||
with open(title_pp_file, 'rb') as title_file: | ||
title_pp = dpickle.load(title_file) | ||
|
||
model_file = os.getenv('MODEL_FILE', 'output_model.h5') | ||
print('model file {0}'.format(model_file)) | ||
self.model = Seq2Seq_Inference(encoder_preprocessor=body_pp, | ||
decoder_preprocessor=title_pp, | ||
seq2seq_model=load_model(model_file)) | ||
|
||
def predict(self, input_text, feature_names): # pylint: disable=unused-argument | ||
return np.asarray([[self.model.generate_issue_title(body[0])[1]] for body in input_text]) |
31 changes: 31 additions & 0 deletions
31
github_issue_summarization/Pachyderm_Example/code/prediction.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
import argparse | ||
import keras | ||
import pandas as pd | ||
from seq2seq_utils import load_text_processor | ||
from seq2seq_utils import Seq2Seq_Inference | ||
|
||
# Parsing flags. | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--input_model_h5") | ||
parser.add_argument("--input_body_preprocessor_dpkl") | ||
parser.add_argument("--input_title_preprocessor_dpkl") | ||
parser.add_argument("--input_testdf_csv") | ||
parser.add_argument("--input_prediction_count", type=int, default=50) | ||
args = parser.parse_args() | ||
print(args) | ||
|
||
# Read data. | ||
testdf = pd.read_csv(args.input_testdf_csv) | ||
|
||
# Load model, preprocessors. | ||
seq2seq_Model = keras.models.load_model(args.input_model_h5) | ||
num_encoder_tokens, body_pp = load_text_processor(args.input_body_preprocessor_dpkl) | ||
num_decoder_tokens, title_pp = load_text_processor(args.input_title_preprocessor_dpkl) | ||
|
||
# Prepare inference. | ||
seq2seq_inf = Seq2Seq_Inference(encoder_preprocessor=body_pp, | ||
decoder_preprocessor=title_pp, | ||
seq2seq_model=seq2seq_Model) | ||
|
||
# Output predictions for n random rows in the test set. | ||
seq2seq_inf.demo_model_predictions(n=args.input_prediction_count, issue_df=testdf) |
50 changes: 50 additions & 0 deletions
50
github_issue_summarization/Pachyderm_Example/code/preprocess_data_for_deep_learning.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
import argparse | ||
import dill as dpickle | ||
import numpy as np | ||
from ktext.preprocess import processor | ||
import pandas as pd | ||
|
||
# Parsing flags. | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--input_traindf_csv") | ||
parser.add_argument("--output_body_preprocessor_dpkl") | ||
parser.add_argument("--output_title_preprocessor_dpkl") | ||
parser.add_argument("--output_train_title_vecs_npy") | ||
parser.add_argument("--output_train_body_vecs_npy") | ||
args = parser.parse_args() | ||
print(args) | ||
|
||
# Read data. | ||
traindf = pd.read_csv(args.input_traindf_csv) | ||
train_body_raw = traindf.body.tolist() | ||
train_title_raw = traindf.issue_title.tolist() | ||
|
||
# Clean, tokenize, and apply padding / truncating such that each document | ||
# length = 70. Also, retain only the top 8,000 words in the vocabulary and set | ||
# the remaining words to 1 which will become common index for rare words. | ||
body_pp = processor(keep_n=8000, padding_maxlen=70) | ||
train_body_vecs = body_pp.fit_transform(train_body_raw) | ||
|
||
print('Example original body:', train_body_raw[0]) | ||
print('Example body after pre-processing:', train_body_vecs[0]) | ||
|
||
# Instantiate a text processor for the titles, with some different parameters. | ||
title_pp = processor(append_indicators=True, keep_n=4500, | ||
padding_maxlen=12, padding='post') | ||
|
||
# process the title data | ||
train_title_vecs = title_pp.fit_transform(train_title_raw) | ||
|
||
print('Example original title:', train_title_raw[0]) | ||
print('Example title after pre-processing:', train_title_vecs[0]) | ||
|
||
# Save the preprocessor. | ||
with open(args.output_body_preprocessor_dpkl, 'wb') as f: | ||
dpickle.dump(body_pp, f, protocol=2) | ||
|
||
with open(args.output_title_preprocessor_dpkl, 'wb') as f: | ||
dpickle.dump(title_pp, f, protocol=2) | ||
|
||
# Save the processed data. | ||
np.save(args.output_train_title_vecs_npy, train_title_vecs) | ||
np.save(args.output_train_body_vecs_npy, train_body_vecs) |
26 changes: 26 additions & 0 deletions
26
github_issue_summarization/Pachyderm_Example/code/process_data.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
import argparse | ||
import pandas as pd | ||
from sklearn.model_selection import train_test_split | ||
|
||
# Parsing flags. | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--input_csv") | ||
parser.add_argument("--sample_size", type=int, default=2000000) | ||
parser.add_argument("--output_traindf_csv") | ||
parser.add_argument("--output_testdf_csv") | ||
args = parser.parse_args() | ||
print(args) | ||
|
||
pd.set_option('display.max_colwidth', 500) | ||
|
||
# Read in data sample 2M rows (for speed of tutorial) | ||
traindf, testdf = train_test_split(pd.read_csv(args.input_csv).sample(n=args.sample_size), | ||
test_size=.10) | ||
|
||
# Print stats about the shape of the data. | ||
print('Train: {:,} rows {:,} columns'.format(traindf.shape[0], traindf.shape[1])) | ||
print('Test: {:,} rows {:,} columns'.format(testdf.shape[0], testdf.shape[1])) | ||
|
||
# Store output as CSV. | ||
traindf.to_csv(args.output_traindf_csv) | ||
testdf.to_csv(args.output_testdf_csv) |
36 changes: 36 additions & 0 deletions
36
github_issue_summarization/Pachyderm_Example/code/recommend.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,36 @@ | ||
import argparse | ||
import keras | ||
import pandas as pd | ||
from seq2seq_utils import load_text_processor | ||
from seq2seq_utils import Seq2Seq_Inference | ||
|
||
# Parsing flags. | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--input_csv") | ||
parser.add_argument("--input_model_h5") | ||
parser.add_argument("--input_body_preprocessor_dpkl") | ||
parser.add_argument("--input_title_preprocessor_dpkl") | ||
parser.add_argument("--input_testdf_csv") | ||
parser.add_argument("--input_topic_number", type=int, default=1) | ||
args = parser.parse_args() | ||
print(args) | ||
|
||
# Read data. | ||
all_data_df = pd.read_csv(args.input_csv) | ||
testdf = pd.read_csv(args.input_testdf_csv) | ||
|
||
# Load model, preprocessors. | ||
num_encoder_tokens, body_pp = load_text_processor(args.input_body_preprocessor_dpkl) | ||
num_decoder_tokens, title_pp = load_text_processor(args.input_title_preprocessor_dpkl) | ||
seq2seq_Model = keras.models.load_model(args.input_model_h5) | ||
|
||
# Prepare the recommender. | ||
all_data_bodies = all_data_df['body'].tolist() | ||
all_data_vectorized = body_pp.transform_parallel(all_data_bodies) | ||
seq2seq_inf_rec = Seq2Seq_Inference(encoder_preprocessor=body_pp, | ||
decoder_preprocessor=title_pp, | ||
seq2seq_model=seq2seq_Model) | ||
recsys_annoyobj = seq2seq_inf_rec.prepare_recommender(all_data_vectorized, all_data_df) | ||
|
||
# Output recommendations for n topics. | ||
seq2seq_inf_rec.demo_model_predictions(n=args.input_topic_number, issue_df=testdf, threshold=1) |
11 changes: 11 additions & 0 deletions
11
github_issue_summarization/Pachyderm_Example/code/requirements.txt
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
numpy | ||
keras | ||
dill | ||
matplotlib | ||
tensorflow | ||
annoy | ||
tqdm | ||
nltk | ||
IPython | ||
ktext | ||
h5py |
Oops, something went wrong.