-
Notifications
You must be signed in to change notification settings - Fork 13
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
712 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
import torch | ||
|
||
import time | ||
|
||
# import gymnasium | ||
import fire | ||
import tqdm | ||
|
||
from controller.mppi import MPPI | ||
from envs.navigation_2d import Navigation2DEnv | ||
|
||
|
||
def main(save_mode: bool = False): | ||
env = Navigation2DEnv() | ||
|
||
# solver | ||
solver = MPPI( | ||
horizon=50, | ||
num_samples=100000, | ||
dim_state=3, | ||
dim_control=2, | ||
dynamics=env.dynamics, | ||
stage_cost=env.stage_cost, | ||
terminal_cost=env.terminal_cost, | ||
u_min=env.u_min, | ||
u_max=env.u_max, | ||
sigmas=torch.tensor([0.5, 0.5]), | ||
lambda_=1, | ||
) | ||
|
||
state = env.reset() | ||
max_steps = 500 | ||
average_time = 0 | ||
for i in range(max_steps): | ||
start = time.time() | ||
with torch.no_grad(): | ||
action_seq, state_seq = solver.forward(state=state) | ||
end = time.time() | ||
average_time += (end - start) / max_steps | ||
|
||
state, is_goal_reached = env.step(action_seq[0, :]) | ||
|
||
is_collisions = env.collision_check(state=state_seq) | ||
|
||
top_samples, top_weights = solver.get_top_samples(num_samples=100) | ||
|
||
if save_mode: | ||
env.render( | ||
predicted_trajectory=state_seq, | ||
is_collisions=is_collisions, | ||
top_samples=(top_samples, top_weights), | ||
mode="rgb_array", | ||
) | ||
# progress bar | ||
if i == 0: | ||
pbar = tqdm.tqdm(total=max_steps, desc="recording video") | ||
pbar.update(1) | ||
|
||
else: | ||
env.render( | ||
predicted_trajectory=state_seq, | ||
is_collisions=is_collisions, | ||
top_samples=(top_samples, top_weights), | ||
mode="human", | ||
) | ||
if is_goal_reached: | ||
print("Goal Reached!") | ||
break | ||
|
||
print("average solve time: {}".format(average_time * 1000), " [ms]") | ||
env.close() # close window ans save video | ||
|
||
|
||
if __name__ == "__main__": | ||
fire.Fire(main) |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,300 @@ | ||
""" | ||
Kohei Honda, 2023. | ||
""" | ||
|
||
from __future__ import annotations | ||
|
||
from typing import Tuple, Union | ||
from matplotlib import pyplot as plt | ||
|
||
import torch | ||
import numpy as np | ||
import os | ||
|
||
|
||
from moviepy.video.io.ImageSequenceClip import ImageSequenceClip | ||
|
||
from envs.obstacle_map_2d import ObstacleMap, generate_random_obstacles | ||
|
||
|
||
@torch.jit.script | ||
def angle_normalize(x): | ||
return ((x + torch.pi) % (2 * torch.pi)) - torch.pi | ||
|
||
|
||
class Navigation2DEnv: | ||
def __init__( | ||
self, | ||
device=torch.device("cuda"), | ||
dtype=torch.float32, | ||
seed: int = 42, | ||
) -> None: | ||
# device and dtype | ||
if torch.cuda.is_available() and device == torch.device("cuda"): | ||
self._device = torch.device("cuda") | ||
else: | ||
self._device = torch.device("cpu") | ||
self._dtype = dtype | ||
|
||
self._obstacle_map = ObstacleMap( | ||
map_size=(20, 20), cell_size=0.1, device=self._device, dtype=self._dtype | ||
) | ||
self._seed = seed | ||
|
||
generate_random_obstacles( | ||
obstacle_map=self._obstacle_map, | ||
random_x_range=(-7.5, 7.5), | ||
random_y_range=(-7.5, 7.5), | ||
num_circle_obs=7, | ||
radius_range=(1, 1), | ||
num_rectangle_obs=7, | ||
width_range=(2, 2), | ||
height_range=(2, 2), | ||
max_iteration=1000, | ||
seed=seed, | ||
) | ||
self._obstacle_map.convert_to_torch() | ||
|
||
self._start_pos = torch.tensor( | ||
[-9.0, -9.0], device=self._device, dtype=self._dtype | ||
) | ||
self._goal_pos = torch.tensor( | ||
[9.0, 9.0], device=self._device, dtype=self._dtype | ||
) | ||
|
||
self._robot_state = torch.zeros(3, device=self._device, dtype=self._dtype) | ||
self._robot_state[:2] = self._start_pos | ||
self._robot_state[2] = angle_normalize( | ||
torch.atan2( | ||
self._goal_pos[1] - self._start_pos[1], | ||
self._goal_pos[0] - self._start_pos[0], | ||
) | ||
) | ||
|
||
# u: [v, omega] (m/s, rad/s) | ||
self.u_min = torch.tensor([-1.0, -1.0], device=self._device, dtype=self._dtype) | ||
self.u_max = torch.tensor([1.0, 1.0], device=self._device, dtype=self._dtype) | ||
|
||
def reset(self) -> torch.Tensor: | ||
""" | ||
Reset robot state. | ||
Returns: | ||
torch.Tensor: shape (3,) [x, y, theta] | ||
""" | ||
self._robot_state[:2] = self._start_pos | ||
self._robot_state[2] = angle_normalize( | ||
torch.atan2( | ||
self._goal_pos[1] - self._start_pos[1], | ||
self._goal_pos[0] - self._start_pos[0], | ||
) | ||
) | ||
|
||
self._fig = plt.figure(layout="tight") | ||
self._ax = self._fig.add_subplot() | ||
self._ax.set_xlim(self._obstacle_map.x_lim) | ||
self._ax.set_ylim(self._obstacle_map.y_lim) | ||
self._ax.set_aspect("equal") | ||
|
||
self._rendered_frames = [] | ||
|
||
return self._robot_state | ||
|
||
def step(self, u: torch.Tensor) -> Tuple[torch.Tensor, bool]: | ||
""" | ||
Update robot state based on differential drive dynamics. | ||
Args: | ||
u (torch.Tensor): control batch tensor, shape (2) [v, omega] | ||
Returns: | ||
Tuple[torch.Tensor, bool]: Tuple of robot state and is goal reached. | ||
""" | ||
u = torch.clamp(u, self.u_min, self.u_max) | ||
|
||
self._robot_state = self.dynamics( | ||
state=self._robot_state.unsqueeze(0), action=u.unsqueeze(0) | ||
).squeeze(0) | ||
|
||
# goal check | ||
goal_threshold = 0.5 | ||
is_goal_reached = ( | ||
torch.norm(self._robot_state[:2] - self._goal_pos) < goal_threshold | ||
) | ||
|
||
return self._robot_state, is_goal_reached | ||
|
||
def render( | ||
self, | ||
predicted_trajectory: torch.Tensor = None, | ||
is_collisions: torch.Tensor = None, | ||
top_samples: Tuple[torch.Tensor, torch.Tensor] = None, | ||
mode: str = "human", | ||
) -> None: | ||
self._ax.set_xlabel("x [m]") | ||
self._ax.set_ylabel("y [m]") | ||
|
||
# obstacle map | ||
self._obstacle_map.render(self._ax) | ||
|
||
# start and goal | ||
self._ax.scatter( | ||
self._start_pos[0].item(), | ||
self._start_pos[1].item(), | ||
marker="o", | ||
color="red", | ||
) | ||
self._ax.scatter( | ||
self._goal_pos[0].item(), | ||
self._goal_pos[1].item(), | ||
marker="o", | ||
color="green", | ||
) | ||
|
||
# robot | ||
self._ax.scatter( | ||
self._robot_state[0].item(), | ||
self._robot_state[1].item(), | ||
marker="o", | ||
color="blue", | ||
) | ||
|
||
# visualize top samples with different alpha based on weights | ||
if top_samples is not None: | ||
top_samples, top_weights = top_samples | ||
top_samples = top_samples.cpu().numpy() | ||
top_weights = top_weights.cpu().numpy() | ||
top_weights = 0.7 * top_weights / np.max(top_weights) | ||
top_weights = np.clip(top_weights, 0.1, 0.7) | ||
for i in range(top_samples.shape[0]): | ||
self._ax.plot( | ||
top_samples[i, :, 0], | ||
top_samples[i, :, 1], | ||
color="black", | ||
alpha=top_weights[i], | ||
) | ||
|
||
# predicted trajectory | ||
if predicted_trajectory is not None: | ||
# if is collision color is red | ||
colors = np.array(["orange"] * predicted_trajectory.shape[1]) | ||
if is_collisions is not None: | ||
is_collisions = is_collisions.cpu().numpy() | ||
is_collisions = np.any(is_collisions, axis=0) | ||
colors[is_collisions] = "red" | ||
|
||
self._ax.scatter( | ||
predicted_trajectory[0, :, 0].cpu().numpy(), | ||
predicted_trajectory[0, :, 1].cpu().numpy(), | ||
color=colors, | ||
marker="o", | ||
s=10, | ||
) | ||
|
||
if mode == "human": | ||
# online rendering | ||
plt.pause(0.001) | ||
plt.cla() | ||
elif mode == "rgb_array": | ||
# offline rendering for video | ||
# TODO: high resolution rendering | ||
self._fig.canvas.draw() | ||
data = np.frombuffer(self._fig.canvas.tostring_rgb(), dtype=np.uint8) | ||
data = data.reshape(self._fig.canvas.get_width_height()[::-1] + (3,)) | ||
plt.cla() | ||
self._rendered_frames.append(data) | ||
|
||
def close(self, path: str = None) -> None: | ||
if path is None: | ||
# mkdir video if not exists | ||
|
||
if not os.path.exists("video"): | ||
os.mkdir("video") | ||
path = "video/" + "navigation_2d_" + str(self._seed) + ".gif" | ||
|
||
if len(self._rendered_frames) > 0: | ||
# save animation | ||
clip = ImageSequenceClip(self._rendered_frames, fps=10) | ||
# clip.write_videofile(path, fps=10) | ||
clip.write_gif(path, fps=10) | ||
|
||
# save first frame as png | ||
plt.imsave( | ||
"video/" + "navigation_2d_" + str(self._seed) + ".png", | ||
self._rendered_frames[0], | ||
) | ||
|
||
def dynamics( | ||
self, state: torch.Tensor, action: torch.Tensor, delta_t: float = 0.1 | ||
) -> torch.Tensor: | ||
""" | ||
Update robot state based on differential drive dynamics. | ||
Args: | ||
state (torch.Tensor): state batch tensor, shape (batch_size, 3) [x, y, theta] | ||
action (torch.Tensor): control batch tensor, shape (batch_size, 2) [v, omega] | ||
delta_t (float): time step interval [s] | ||
Returns: | ||
torch.Tensor: shape (batch_size, 3) [x, y, theta] | ||
""" | ||
x = state[:, 0].view(-1, 1) | ||
y = state[:, 1].view(-1, 1) | ||
theta = state[:, 2].view(-1, 1) | ||
v = torch.clamp(action[:, 0].view(-1, 1), self.u_min[0], self.u_max[0]) | ||
omega = torch.clamp(action[:, 1].view(-1, 1), self.u_min[1], self.u_max[1]) | ||
theta = angle_normalize(theta) | ||
|
||
new_x = x + v * torch.cos(theta) * delta_t | ||
new_y = y + v * torch.sin(theta) * delta_t | ||
new_theta = angle_normalize(theta + omega * delta_t) | ||
|
||
# clamp x and y to the map boundary | ||
x_lim = torch.tensor( | ||
self._obstacle_map.x_lim, device=self._device, dtype=self._dtype | ||
) | ||
y_lim = torch.tensor( | ||
self._obstacle_map.y_lim, device=self._device, dtype=self._dtype | ||
) | ||
clamped_x = torch.clamp(new_x, x_lim[0], x_lim[1]) | ||
clamped_y = torch.clamp(new_y, y_lim[0], y_lim[1]) | ||
|
||
return torch.cat([clamped_x, clamped_y, new_theta], dim=1) | ||
|
||
def stage_cost(self, state: torch.Tensor, action: torch.Tensor) -> torch.Tensor: | ||
""" | ||
Calculate stage cost. | ||
Args: | ||
state (torch.Tensor): state batch tensor, shape (batch_size, 3) [x, y, theta] | ||
action (torch.Tensor): control batch tensor, shape (batch_size, 2) [v, omega] | ||
Returns: | ||
torch.Tensor: shape (batch_size,) | ||
""" | ||
goal_cost = torch.norm(state[:, :2] - self._goal_pos, dim=1) | ||
|
||
pos_batch = state[:, :2].unsqueeze(1) # (batch_size, 1, 2) | ||
|
||
obstacle_cost = self._obstacle_map.compute_cost(pos_batch).squeeze( | ||
1 | ||
) # (batch_size,) | ||
|
||
cost = goal_cost + 10000 * obstacle_cost | ||
|
||
return cost | ||
|
||
def terminal_cost(self, state: torch.Tensor) -> torch.Tensor: | ||
""" | ||
Calculate terminal cost. | ||
Args: | ||
x (torch.Tensor): state batch tensor, shape (batch_size, 3) [x, y, theta] | ||
Returns: | ||
torch.Tensor: shape (batch_size,) | ||
""" | ||
return self.stage_cost(state=state, action=torch.zeros_like(state[:, :2])) | ||
|
||
def collision_check(self, state: torch.Tensor) -> torch.Tensor: | ||
""" | ||
Args: | ||
state (torch.Tensor): state batch tensor, shape (batch_size, traj_size , 3) [x, y, theta] | ||
Returns: | ||
torch.Tensor: shape (batch_size,) | ||
""" | ||
pos_batch = state[:, :, :2] | ||
is_collisions = self._obstacle_map.compute_cost(pos_batch).squeeze(1) | ||
return is_collisions |
Oops, something went wrong.