Skip to content

Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference

License

Notifications You must be signed in to change notification settings

knut0815/adversarial-robustness-toolbox

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Adversarial Robustness Toolbox (ART) v1.3


Build Status Documentation Status GitHub version Language grade: Python Total alerts codecov Code style: black License: MIT PyPI - Python Version slack-img

中文README请按此处

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to evaluate, defend, certify and verify Machine Learning models and applications against the adversarial threats of Evasion, Poisoning, Extraction, and Inference. ART supports all popular machine learning frameworks (TensorFlow, Keras, PyTorch, MXNet, scikit-learn, XGBoost, LightGBM, CatBoost, GPy, etc.), all data types (images, tables, audio, video, etc.) and machine learning tasks (classification, object detection, generation, certification, etc.).


Learn more

Get Started Documentation Contributing
- Installation
- Examples
- Notebooks
- Attacks
- Defences
- Estimators
- Metrics
- Technical Documentation
- Slack, Invitation
- Contributing
- Roadmap
- Citing

The library is under continuous development. Feedback, bug reports and contributions are very welcome!

About

Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.6%
  • Other 0.4%