XNU kernel is part of the Darwin operating system for use in macOS and iOS operating systems. XNU is an acronym for X is Not Unix. XNU is a hybrid kernel combining the Mach kernel developed at Carnegie Mellon University with components from FreeBSD and a C++ API for writing drivers called IOKit. XNU runs on x86_64 for both single processor and multi-processor configurations.
config
- configurations for exported apis for supported architecture and platformSETUP
- Basic set of tools used for configuring the kernel, versioning and kextsymbol management.EXTERNAL_HEADERS
- Headers sourced from other projects to avoid dependency cycles when building. These headers should be regularly synced when source is updated.libkern
- C++ IOKit library code for handling of drivers and kexts.libsa
- kernel bootstrap code for startuplibsyscall
- syscall library interface for userspace programslibkdd
- source for user library for parsing kernel data like kernel chunked data.makedefs
- top level rules and defines for kernel build.osfmk
- Mach kernel based subsystemspexpert
- Platform specific code like interrupt handling, atomics etc.security
- Mandatory Access Check policy interfaces and related implementation.bsd
- BSD subsystems codetools
- A set of utilities for testing, debugging and profiling kernel.
The xnu make system can build kernel based on KERNEL_CONFIGS
& ARCH_CONFIGS
variables as arguments.
Here is the syntax:
make SDKROOT=<sdkroot> ARCH_CONFIGS=<arch> KERNEL_CONFIGS=<variant>
Where:
- <sdkroot>: path to macOS SDK on disk. (defaults to
/
) - <variant>: can be
debug
,development
,release
,profile
and configures compilation flags and asserts throughout kernel code. - <arch> : can be valid arch to build for. (E.g.
X86_64
)
To build a kernel for the same architecture as running OS, just type
$ make
$ make SDKROOT=macosx.internal
Additionally, there is support for configuring architectures through ARCH_CONFIGS
and kernel configurations with KERNEL_CONFIGS
.
$ make SDKROOT=macosx.internal ARCH_CONFIGS=X86_64 KERNEL_CONFIGS=DEVELOPMENT
$ make SDKROOT=macosx.internal ARCH_CONFIGS=X86_64 KERNEL_CONFIGS="RELEASE DEVELOPMENT DEBUG"
Note:
- By default, architecture is set to the build machine architecture, and the default kernel config is set to build for DEVELOPMENT.
This will also create a bootable image, kernel.[config], and a kernel binary with symbols, kernel.[config].unstripped.
-
To build with RELEASE kernel configuration
make KERNEL_CONFIGS=RELEASE SDKROOT=/path/to/SDK
Define architectures in your environment or when running a make command.
$ make ARCH_CONFIGS="X86_64" exporthdrs all
- $ make MAKEJOBS=-j8 # this will use 8 processes during the build. The default is 2x the number of active CPUS.
- $ make -j8 # the standard command-line option is also accepted
- $ make -w # trace recursive make invocations. Useful in combination with VERBOSE=YES
- $ make BUILD_LTO=0 # build without LLVM Link Time Optimization
- $ make REMOTEBUILD=user@remotehost # perform build on remote host
- $ make BUILD_JSON_COMPILATION_DATABASE=1 # Build Clang JSON Compilation Database
The XNU build system can optionally output color-formatted build output. To enable this, you can either
set the XNU_LOGCOLORS
environment variable to y
, or you can pass LOGCOLORS=y
to the make command.
By default, a DWARF debug information repository is created during the install phase; this is a "bundle" named kernel.development.<variant>.dSYM To select the older STABS debug information format (where debug information is embedded in the kernel.development.unstripped image), set the BUILD_STABS environment variable.
$ export BUILD_STABS=1
$ make
To test the xnu kernel, you need to build a kernelcache that links the kexts and kernel together into a single bootable image. To build a kernelcache you can use the following mechanisms:
-
Using automatic kernelcache generation with
kextd
. The kextd daemon keeps watching for changing in/System/Library/Extensions
directory. So you can setup new kernel as$ cp BUILD/obj/DEVELOPMENT/X86_64/kernel.development /System/Library/Kernels/ $ touch /System/Library/Extensions $ ps -e | grep kextd
-
Manually invoking
kextcache
to build new kernelcache.$ kextcache -q -z -a x86_64 -l -n -c /var/tmp/kernelcache.test -K /var/tmp/kernel.test /System/Library/Extensions
The development kernel and iBoot supports configuring boot arguments so that we can safely boot into test kernel and, if things go wrong, safely fall back to previously used kernelcache. Following are the steps to get such a setup:
-
Create kernel cache using the kextcache command as
/kernelcache.test
-
Copy exiting boot configurations to alternate file
$ cp /Library/Preferences/SystemConfiguration/com.apple.Boot.plist /next_boot.plist
-
Update the kernelcache and boot-args for your setup
$ plutil -insert "Kernel Cache" -string "kernelcache.test" /next_boot.plist $ plutil -replace "Kernel Flags" -string "debug=0x144 -v kernelsuffix=test " /next_boot.plist
-
Copy the new config to
/Library/Preferences/SystemConfiguration/
$ cp /next_boot.plist /Library/Preferences/SystemConfiguration/boot.plist
-
Bless the volume with new configs.
$ sudo -n bless --mount / --setBoot --nextonly --options "config=boot"
The
--nextonly
flag specifies that use theboot.plist
configs only for one boot. So if the kernel panic's you can easily power reboot and recover back to original kernel.
Set up your build environment and from the top directory, run:
$ make tags # this will build ctags and etags on a case-sensitive volume, only ctags on case-insensitive
$ make TAGS # this will build etags
$ make cscope # this will build cscope database
Source files can be reformatted to comply with the xnu code style using the "restyle" make target invoked from the top-level project directory.
$ make restyle # re-format all source files to be xnu code style conformant.
Compliance can be checked using the "checkstyle" make target.
$ make checkstyle # Check all relevant source files for xnu code style conformance.
To install IOKit headers, see additional comments in iokit/IOKit/Makefile.
XNU installs header files at the following locations -
a. $(DSTROOT)/System/Library/Frameworks/Kernel.framework/Headers
b. $(DSTROOT)/System/Library/Frameworks/Kernel.framework/PrivateHeaders
c. $(DSTROOT)/usr/include/
d. $(DSTROOT)/System/Library/Frameworks/System.framework/PrivateHeaders
Kernel.framework
is used by kernel extensions.
The System.framework
and /usr/include
are used by user level applications.
The header files in framework's PrivateHeaders
are only available for ** Apple Internal Development **.
The directory containing the header file should have a Makefile that
creates the list of files that should be installed at different locations.
If you are adding the first header file in a directory, you will need to
create Makefile similar to xnu/bsd/sys/Makefile
.
Add your header file to the correct file list depending on where you want to install it. The default locations where the header files are installed from each file list are -
a. `DATAFILES` : To make header file available in user level -
`$(DSTROOT)/usr/include`
b. `PRIVATE_DATAFILES` : To make header file available to Apple internal in
user level -
`$(DSTROOT)/System/Library/Frameworks/System.framework/PrivateHeaders`
c. `KERNELFILES` : To make header file available in kernel level -
`$(DSTROOT)/System/Library/Frameworks/Kernel.framework/Headers`
`$(DSTROOT)/System/Library/Frameworks/Kernel.framework/PrivateHeaders`
d. `PRIVATE_KERNELFILES` : To make header file available to Apple internal
for kernel extensions -
`$(DSTROOT)/System/Library/Frameworks/Kernel.framework/PrivateHeaders`
The Makefile combines the file lists mentioned above into different
install lists which are used by build system to install the header files. There
are two types of install lists: machine-dependent and machine-independent.
These lists are indicated by the presence of MD
and MI
in the build
setting, respectively. If your header is architecture-specific, then you should
use a machine-dependent install list (e.g. INSTALL_MD_LIST
). If your header
should be installed for all architectures, then you should use a
machine-independent install list (e.g. INSTALL_MI_LIST
).
If the install list that you are interested does not exist, create it by adding the appropriate file lists. The default install lists, its member file lists and their default location are described below -
a. `INSTALL_MI_LIST` : Installs header file to a location that is available to everyone in user level.
Locations -
$(DSTROOT)/usr/include
Definition -
INSTALL_MI_LIST = ${DATAFILES}
b. `INSTALL_MI_LCL_LIST` : Installs header file to a location that is available
for Apple internal in user level.
Locations -
$(DSTROOT)/System/Library/Frameworks/System.framework/PrivateHeaders
Definition -
INSTALL_MI_LCL_LIST = ${PRIVATE_DATAFILES}
c. `INSTALL_KF_MI_LIST` : Installs header file to location that is available
to everyone for kernel extensions.
Locations -
$(DSTROOT)/System/Library/Frameworks/Kernel.framework/Headers
Definition -
INSTALL_KF_MI_LIST = ${KERNELFILES}
d. `INSTALL_KF_MI_LCL_LIST` : Installs header file to location that is
available for Apple internal for kernel extensions.
Locations -
$(DSTROOT)/System/Library/Frameworks/Kernel.framework/PrivateHeaders
Definition -
INSTALL_KF_MI_LCL_LIST = ${KERNELFILES} ${PRIVATE_KERNELFILES}
e. `EXPORT_MI_LIST` : Exports header file to all of xnu (bsd/, osfmk/, etc.)
for compilation only. Does not install anything into the SDK.
Definition -
EXPORT_MI_LIST = ${KERNELFILES} ${PRIVATE_KERNELFILES}
If you want to install the header file in a sub-directory of the paths
described in (1), specify the directory name using two variables
INSTALL_MI_DIR
and EXPORT_MI_DIR
as follows -
INSTALL_MI_DIR = dirname
EXPORT_MI_DIR = dirname
A single header file can exist at different locations using the steps mentioned above. However it might not be desirable to make all the code in the header file available at all the locations. For example, you want to export a function only to kernel level but not user level.
You can use C language's pre-processor directive (#ifdef, #endif, #ifndef) to control the text generated before a header file is installed. The kernel only includes the code if the conditional macro is TRUE and strips out code for FALSE conditions from the header file.
Some pre-defined macros and their descriptions are -
a. `PRIVATE` : If defined, enclosed definitions are considered System
Private Interfaces. These are visible within xnu and
exposed in user/kernel headers installed within the AppleInternal
"PrivateHeaders" sections of the System and Kernel frameworks.
b. `KERNEL_PRIVATE` : If defined, enclosed code is available to all of xnu
kernel and Apple internal kernel extensions and omitted from user
headers.
c. `BSD_KERNEL_PRIVATE` : If defined, enclosed code is visible exclusively
within the xnu/bsd module.
d. `MACH_KERNEL_PRIVATE`: If defined, enclosed code is visible exclusively
within the xnu/osfmk module.
e. `XNU_KERNEL_PRIVATE`: If defined, enclosed code is visible exclusively
within xnu.
f. `KERNEL` : If defined, enclosed code is available within xnu and kernel
extensions and is not visible in user level header files. Only the
header files installed in following paths will have the code -
$(DSTROOT)/System/Library/Frameworks/Kernel.framework/Headers
$(DSTROOT)/System/Library/Frameworks/Kernel.framework/PrivateHeaders
xnu
offers the following mechanisms for conditionally compiling code:
a. *CPU Characteristics* If the code you are guarding has specific
characterstics that will vary only based on the CPU architecture being
targeted, use this option. Prefer checking for features of the
architecture (e.g. `__LP64__`, `__LITTLE_ENDIAN__`, etc.).
b. *New Features* If the code you are guarding, when taken together,
implements a feature, you should define a new feature in `config/MASTER`
and use the resulting `CONFIG` preprocessor token (e.g. for a feature
named `config_virtual_memory`, check for `#if CONFIG_VIRTUAL_MEMORY`).
This practice ensures that existing features may be brought to other
platforms by simply changing a feature switch.
c. *Existing Features* You can use existing features if your code is
strongly tied to them (e.g. use `SECURE_KERNEL` if your code implements
new functionality that is exclusively relevant to the trusted kernel and
updates the definition/understanding of what being a trusted kernel means).
It is recommended that you avoid compiling based on the target platform. xnu
does not define the platform macros from TargetConditionals.h
(TARGET_OS_OSX
, TARGET_OS_IOS
, etc.).
There is a TARGET_OS_EMBEDDED
macro, but this should be avoided as it is in
general too broad a definition for most functionality.
XNU kernel has multiple mechanisms for testing.
-
Assertions - The DEVELOPMENT and DEBUG kernel configs are compiled with assertions enabled. This allows developers to easily test invariants and conditions.
-
XNU Power On Self Tests (
XNUPOST
): The XNUPOST config allows for building the kernel with basic set of test functions that are run before first user space process is launched. Since XNU is hybrid between MACH and BSD, we have two locations where tests can be added.xnu/osfmk/tests/ # For testing mach based kernel structures and apis. bsd/tests/ # For testing BSD interfaces.
Please follow the documentation at osfmk/tests/README.md
-
User level tests: The
tools/tests/
directory holds all the tests that verify syscalls and other features of the xnu kernel. The make targetxnu_tests
can be used to build all the tests supported.$ make RC_ProjectName=xnu_tests SDKROOT=/path/to/SDK
These tests are individual programs that can be run from Terminal and report tests status by means of std posix exit codes (0 -> success) and/or stdout. Please read detailed documentation in tools/tests/unit_tests/README.md
XNU uses different data formats for passing data in its api. The most standard way is using syscall arguments. But for complex data
it often relies of sending memory saved by C structs. This packaged data transport mechanism is fragile and leads to broken interfaces
between user space programs and kernel apis. libkdd
directory holds user space library that can parse custom data provided by the
same version of kernel. The kernel chunked data format is described in detail at libkdd/README.md.
The xnu kernel supports debugging with a remote kernel debugging protocol (kdp). Please refer documentation at [technical note] TN2063 By default the kernel is setup to reboot on a panic. To debug a live kernel, the kdp server is setup to listen for UDP connections over ethernet. For machines without ethernet port, this behavior can be altered with use of kernel boot-args. Following are some common options.
debug=0x144
- setups debug variables to start kdp debugserver on panic-v
- print kernel logs on screen. By default XNU only shows grey screen with boot art.kdp_match_name=en1
- Override default port selection for kdp. Supported for ethernet, thunderbolt and serial debugging.
To debug a panic'ed kernel, use llvm debugger (lldb) along with unstripped symbol rich kernel binary.
sh$ lldb kernel.development.unstripped
And then you can connect to panic'ed machine with kdp_remote [ip addr]
or gdb_remote [hostip : port]
commands.
Each kernel is packaged with kernel specific debug scripts as part of the build process. For security reasons these special commands
and scripts do not get loaded automatically when lldb is connected to machine. Please add the following setting to your ~/.lldbinit
if you wish to always load these macros.
settings set target.load-script-from-symbol-file true
The tools/lldbmacros
directory contains the source for each of these commands. Please follow the README.md
for detailed explanation of commands and their usage.