forked from jr0th/segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
added training script working with generator for random patches
- Loading branch information
Showing
1 changed file
with
106 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
import keras.backend | ||
import keras.callbacks | ||
import keras.layers | ||
import keras.models | ||
import keras.optimizers | ||
|
||
import matplotlib | ||
matplotlib.use('SVG') | ||
|
||
import helper.callbacks | ||
import helper.model_builder | ||
import helper.visualize | ||
import helper.objectives | ||
import helper.data_provider | ||
import helper.metrics | ||
|
||
import skimage.io | ||
import sklearn.metrics | ||
|
||
import scipy.stats | ||
import pandas as pd | ||
|
||
import tensorflow as tf | ||
import numpy as np | ||
|
||
# constants | ||
const_lr = 1e-4 | ||
|
||
chkpt_file = "../checkpoints/checkpoint_boundary_4_generator.hdf5" | ||
csv_log_file = "../logs/log_boundary.csv" | ||
|
||
out_dir = "../out_boundary_4_generator/" | ||
tb_log_dir = "../logs/logs_tensorboard_boundary_4_generator/" | ||
|
||
train_dir_x = '/home/jr0th/github/segmentation/data/BBBC022_hand_200/random_patches/training/x_big/all/' | ||
train_dir_y = '/home/jr0th/github/segmentation/data/BBBC022_hand_200/random_patches/training/y_big_boundary_4/all/' | ||
|
||
val_dir_x = '/home/jr0th/github/segmentation/data/BBBC022_hand_200/validation/x_big/' | ||
val_dir_y = '/home/jr0th/github/segmentation/data/BBBC022_hand_200/validation/y_big_boundary_4/' | ||
|
||
data_type = "images" # "images" or "array" | ||
|
||
hard = True | ||
|
||
nb_epoch = 100 # 100 | ||
batch_size = 10 | ||
nb_batches = int(400 / batch_size) # 100 images, 400 patches | ||
|
||
# images and masks are in 8 bit | ||
bit_depth = 8 | ||
|
||
# make sure these matches number for to the validation set | ||
val_steps = int(200 / batch_size) # 50 images, 200 patches | ||
|
||
dim1 = 256 | ||
dim2 = 256 | ||
|
||
# build session running on a specific GPU | ||
configuration = tf.ConfigProto() | ||
configuration.gpu_options.allow_growth = True | ||
configuration.gpu_options.visible_device_list = "2" | ||
session = tf.Session(config = configuration) | ||
|
||
# apply session | ||
keras.backend.set_session(session) | ||
|
||
# get training generator | ||
train_gen = helper.data_provider.random_sample_generator(train_dir_x, train_dir_y, batch_size, bit_depth, dim1, dim2) | ||
val_gen = helper.data_provider.random_sample_generator(val_dir_x, val_dir_y, batch_size, bit_depth, dim1, dim2) | ||
|
||
# build model | ||
model = helper.model_builder.get_model_1_class(dim1, dim2) | ||
model.summary() | ||
if(hard): | ||
loss = "binary_crossentropy" | ||
metrics = [keras.metrics.binary_accuracy, helper.metrics.recall, helper.metrics.precision] | ||
else: | ||
loss = "mean_squared_error" | ||
metrics = [] | ||
optimizer = keras.optimizers.RMSprop(lr = const_lr) | ||
|
||
model.compile(loss=loss, metrics=metrics, optimizer=optimizer) | ||
|
||
# CALLBACKS | ||
# save model after each epoch | ||
callback_model_checkpoint = keras.callbacks.ModelCheckpoint(filepath=chkpt_file, save_weights_only=True, save_best_only=True) | ||
callback_csv = keras.callbacks.CSVLogger(filename=csv_log_file) | ||
callback_splits_and_merges = helper.callbacks.SplitsAndMergesLoggerBoundary(data_type, val_gen, gen_calls = val_steps, log_dir=tb_log_dir) | ||
callback_tensorboard = keras.callbacks.TensorBoard(log_dir=tb_log_dir, histogram_freq=1) | ||
|
||
callbacks=[callback_model_checkpoint, callback_csv, callback_splits_and_merges] | ||
|
||
statistics = model.fit_generator( | ||
epochs=nb_epoch, | ||
steps_per_epoch=nb_batches, | ||
generator=train_gen, | ||
validation_data=val_gen, | ||
validation_steps=val_steps, | ||
max_q_size=1, | ||
callbacks=callbacks, | ||
verbose=1 | ||
) | ||
|
||
# visualize learning stats | ||
helper.visualize.visualize_learning_stats_boundary(statistics, out_dir, metrics) | ||
print('Done! :)') |