forked from guillaume-be/rust-bert
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
c98695c
commit 30528ca
Showing
4 changed files
with
274 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,200 @@ | ||
// // Copyright 2019-present Microsoft | ||
// // Copyright 2020-present, the HuggingFace Inc. team. | ||
// // Copyright 2020 Guillaume Becquin | ||
// // Licensed under the Apache License, Version 2.0 (the "License"); | ||
// // you may not use this file except in compliance with the License. | ||
// // You may obtain a copy of the License at | ||
// // http://www.apache.org/licenses/LICENSE-2.0 | ||
// // Unless required by applicable law or agreed to in writing, software | ||
// // distributed under the License is distributed on an "AS IS" BASIS, | ||
// // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// // See the License for the specific language governing permissions and | ||
// // limitations under the License. | ||
// | ||
// /// # Disclaimer | ||
// /// This repository aims to facilitate research in large-scale pre-training for conversational data. | ||
// /// This toolkit contains only part of the modeling machinery needed to actually produce a model | ||
// /// weight file in a running dialog. On its own, this model provides only information about the | ||
// /// weights of various text spans; in order for a researcher to actually use it, they will need | ||
// /// to bring conversational data of their own and decode the response generation from the pretrained | ||
// /// system. Neither the author of this repository or Microsoft are responsible for any generation | ||
// /// from the 3rd party utilization of the pretrained system. | ||
// /// | ||
// /// | ||
// /// | ||
// /// | ||
// use crate::bart::{ | ||
// BartConfigResources, BartMergesResources, BartModelResources, BartVocabResources, | ||
// }; | ||
// use crate::common::resources::{RemoteResource, Resource}; | ||
// use crate::pipelines::generation::{BartGenerator, GenerateConfig, LanguageGenerator}; | ||
// use tch::Device; | ||
// | ||
// /// # Configuration for multi-turn classification | ||
// /// Contains information regarding the model to load, mirrors the GenerationConfig, with a | ||
// /// different set of default parameters and sets the device to place the model on. | ||
// pub struct ConversationConfig { | ||
// /// Model weights resource (default: DialoGPT-medium) | ||
// pub model_resource: Resource, | ||
// /// Config resource (default: DialoGPT-medium) | ||
// pub config_resource: Resource, | ||
// /// Vocab resource (default: DialoGPT-medium) | ||
// pub vocab_resource: Resource, | ||
// /// Merges resource (default: DialoGPT-medium) | ||
// pub merges_resource: Resource, | ||
// /// Minimum sequence length (default: 0) | ||
// pub min_length: u64, | ||
// /// Maximum sequence length (default: 20) | ||
// pub max_length: u64, | ||
// /// Sampling flag. If true, will perform top-k and/or nucleus sampling on generated tokens, otherwise greedy (deterministic) decoding (default: true) | ||
// pub do_sample: bool, | ||
// /// Early stopping flag indicating if the beam search should stop as soon as `num_beam` hypotheses have been generated (default: false) | ||
// pub early_stopping: bool, | ||
// /// Number of beams for beam search (default: 5) | ||
// pub num_beams: u64, | ||
// /// Temperature setting. Values higher than 1 will improve originality at the risk of reducing relevance (default: 1.0) | ||
// pub temperature: f64, | ||
// /// Top_k values for sampling tokens. Value higher than 0 will enable the feature (default: 0) | ||
// pub top_k: u64, | ||
// /// Top_p value for [Nucleus sampling, Holtzman et al.](http://arxiv.org/abs/1904.09751). Keep top tokens until cumulative probability reaches top_p (default: 0.9) | ||
// pub top_p: f64, | ||
// /// Repetition penalty (mostly useful for CTRL decoders). Values higher than 1 will penalize tokens that have been already generated. (default: 1.0) | ||
// pub repetition_penalty: f64, | ||
// /// Exponential penalty based on the length of the hypotheses generated (default: 1.0) | ||
// pub length_penalty: f64, | ||
// /// Number of allowed repetitions of n-grams. Values higher than 0 turn on this feature (default: 3) | ||
// pub no_repeat_ngram_size: u64, | ||
// /// Number of sequences to return for each prompt text (default: 1) | ||
// pub num_return_sequences: u64, | ||
// /// Device to place the model on (default: CUDA/GPU when available) | ||
// pub device: Device, | ||
// } | ||
// | ||
// impl Default for ConversationConfig { | ||
// fn default() -> ConversationConfig { | ||
// ConversationConfig { | ||
// model_resource: Resource::Remote(RemoteResource::from_pretrained( | ||
// BartModelResources::BART_CNN, | ||
// )), | ||
// config_resource: Resource::Remote(RemoteResource::from_pretrained( | ||
// BartConfigResources::BART_CNN, | ||
// )), | ||
// vocab_resource: Resource::Remote(RemoteResource::from_pretrained( | ||
// BartVocabResources::BART_CNN, | ||
// )), | ||
// merges_resource: Resource::Remote(RemoteResource::from_pretrained( | ||
// BartMergesResources::BART_CNN, | ||
// )), | ||
// min_length: 56, | ||
// max_length: 142, | ||
// do_sample: false, | ||
// early_stopping: false, | ||
// num_beams: 3, | ||
// temperature: 1.0, | ||
// top_k: 50, | ||
// top_p: 1.0, | ||
// repetition_penalty: 1.0, | ||
// length_penalty: 1.0, | ||
// no_repeat_ngram_size: 3, | ||
// num_return_sequences: 1, | ||
// device: Device::cuda_if_available(), | ||
// } | ||
// } | ||
// } | ||
// | ||
// /// # SummarizationModel to perform summarization | ||
// pub struct SummarizationModel { | ||
// model: BartGenerator, | ||
// } | ||
// | ||
// impl SummarizationModel { | ||
// /// Build a new `SummarizationModel` | ||
// /// | ||
// /// # Arguments | ||
// /// | ||
// /// * `summarization_config` - `SummarizationConfig` object containing the resource references (model, vocabulary, configuration), summarization options and device placement (CPU/GPU) | ||
// /// | ||
// /// # Example | ||
// /// | ||
// /// ```no_run | ||
// /// # fn main() -> failure::Fallible<()> { | ||
// /// use rust_bert::pipelines::summarization::SummarizationModel; | ||
// /// | ||
// /// let mut summarization_model = SummarizationModel::new(Default::default())?; | ||
// /// # Ok(()) | ||
// /// # } | ||
// /// ``` | ||
// pub fn new(summarization_config: SummarizationConfig) -> failure::Fallible<SummarizationModel> { | ||
// let generate_config = GenerateConfig { | ||
// model_resource: summarization_config.model_resource, | ||
// config_resource: summarization_config.config_resource, | ||
// merges_resource: summarization_config.merges_resource, | ||
// vocab_resource: summarization_config.vocab_resource, | ||
// min_length: summarization_config.min_length, | ||
// max_length: summarization_config.max_length, | ||
// do_sample: summarization_config.do_sample, | ||
// early_stopping: summarization_config.early_stopping, | ||
// num_beams: summarization_config.num_beams, | ||
// temperature: summarization_config.temperature, | ||
// top_k: summarization_config.top_k, | ||
// top_p: summarization_config.top_p, | ||
// repetition_penalty: summarization_config.repetition_penalty, | ||
// length_penalty: summarization_config.length_penalty, | ||
// no_repeat_ngram_size: summarization_config.no_repeat_ngram_size, | ||
// num_return_sequences: summarization_config.num_return_sequences, | ||
// device: summarization_config.device, | ||
// }; | ||
// | ||
// let model = BartGenerator::new(generate_config)?; | ||
// | ||
// Ok(SummarizationModel { model }) | ||
// } | ||
// | ||
// /// Summarize texts provided | ||
// /// | ||
// /// # Arguments | ||
// /// | ||
// /// * `input` - `&[&str]` Array of texts to summarize. | ||
// /// | ||
// /// # Returns | ||
// /// * `Vec<String>` Summarized texts | ||
// /// | ||
// /// # Example | ||
// /// | ||
// /// ```no_run | ||
// /// # fn main() -> failure::Fallible<()> { | ||
// /// use rust_bert::pipelines::generation::LanguageGenerator; | ||
// /// use rust_bert::pipelines::summarization::SummarizationModel; | ||
// /// let model = SummarizationModel::new(Default::default())?; | ||
// /// | ||
// /// let input = ["In findings published Tuesday in Cornell University's arXiv by a team of scientists | ||
// /// from the University of Montreal and a separate report published Wednesday in Nature Astronomy by a team | ||
// /// from University College London (UCL), the presence of water vapour was confirmed in the atmosphere of K2-18b, | ||
// /// a planet circling a star in the constellation Leo. This is the first such discovery in a planet in its star's | ||
// /// habitable zone — not too hot and not too cold for liquid water to exist. The Montreal team, led by Björn Benneke, | ||
// /// used data from the NASA's Hubble telescope to assess changes in the light coming from K2-18b's star as the planet | ||
// /// passed between it and Earth. They found that certain wavelengths of light, which are usually absorbed by water, | ||
// /// weakened when the planet was in the way, indicating not only does K2-18b have an atmosphere, but the atmosphere | ||
// /// contains water in vapour form. The team from UCL then analyzed the Montreal team's data using their own software | ||
// /// and confirmed their conclusion. This was not the first time scientists have found signs of water on an exoplanet, | ||
// /// but previous discoveries were made on planets with high temperatures or other pronounced differences from Earth. | ||
// /// \"This is the first potentially habitable planet where the temperature is right and where we now know there is water,\" | ||
// /// said UCL astronomer Angelos Tsiaras. \"It's the best candidate for habitability right now.\" \"It's a good sign\", | ||
// /// said Ryan Cloutier of the Harvard–Smithsonian Center for Astrophysics, who was not one of either study's authors. | ||
// /// \"Overall,\" he continued, \"the presence of water in its atmosphere certainly improves the prospect of K2-18b being | ||
// /// a potentially habitable planet, but further observations will be required to say for sure. \" | ||
// /// K2-18b was first identified in 2015 by the Kepler space telescope. It is about 110 light-years from Earth and larger | ||
// /// but less dense. Its star, a red dwarf, is cooler than the Sun, but the planet's orbit is much closer, such that a year | ||
// /// on K2-18b lasts 33 Earth days. According to The Guardian, astronomers were optimistic that NASA's James Webb space | ||
// /// telescope — scheduled for launch in 2021 — and the European Space Agency's 2028 ARIEL program, could reveal more | ||
// /// about exoplanets like K2-18b."]; | ||
// /// | ||
// /// let output = model.summarize(&input); | ||
// /// # Ok(()) | ||
// /// # } | ||
// /// ``` | ||
// /// (New sample credits: [WikiNews](https://en.wikinews.org/wiki/Astronomers_find_water_vapour_in_atmosphere_of_exoplanet_K2-18b)) | ||
// pub fn summarize(&self, texts: &[&str]) -> Vec<String> { | ||
// self.model.generate(Some(texts.to_vec()), None) | ||
// } | ||
// } |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
from transformers.file_utils import get_from_cache, S3_BUCKET_PREFIX | ||
from pathlib import Path | ||
import shutil | ||
import os | ||
import numpy as np | ||
import torch | ||
import subprocess | ||
|
||
ROOT_PATH = S3_BUCKET_PREFIX + '/' + 'microsoft/DialoGPT-medium' | ||
|
||
config_path = ROOT_PATH + '/config.json' | ||
vocab_path = ROOT_PATH + '/vocab.json' | ||
merges_path = ROOT_PATH + '/merges.txt' | ||
weights_path = ROOT_PATH + '/pytorch_model.bin' | ||
|
||
target_path = Path.home() / 'rustbert' / 'dialogpt-medium' | ||
|
||
temp_config = get_from_cache(config_path) | ||
temp_vocab = get_from_cache(vocab_path) | ||
temp_merges = get_from_cache(merges_path) | ||
temp_weights = get_from_cache(weights_path) | ||
|
||
os.makedirs(str(target_path), exist_ok=True) | ||
|
||
config_path = str(target_path / 'config.json') | ||
vocab_path = str(target_path / 'vocab.json') | ||
merges_path = str(target_path / 'merges.txt') | ||
model_path = str(target_path / 'model.bin') | ||
|
||
shutil.copy(temp_config, config_path) | ||
shutil.copy(temp_vocab, vocab_path) | ||
shutil.copy(temp_merges, merges_path) | ||
shutil.copy(temp_weights, model_path) | ||
|
||
weights = torch.load(temp_weights, map_location='cpu') | ||
nps = {} | ||
for k, v in weights.items(): | ||
nps['transformer.' + k] = np.ascontiguousarray(v.cpu().numpy()).astype(np.float32) | ||
if k == 'wte.weight': | ||
nps['lm_head.weight'] = np.ascontiguousarray(v.cpu().numpy()).astype(np.float32) | ||
|
||
np.savez(target_path / 'model.npz', **nps) | ||
|
||
source = str(target_path / 'model.npz') | ||
target = str(target_path / 'model.ot') | ||
|
||
toml_location = (Path(__file__).resolve() / '..' / '..' / 'Cargo.toml').resolve() | ||
|
||
subprocess.call( | ||
['cargo', 'run', '--bin=convert-tensor', '--manifest-path=%s' % toml_location, '--', source, target]) | ||
|
||
os.remove(str(target_path / 'model.bin')) | ||
os.remove(str(target_path / 'model.npz')) |