-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcompute_gradients_Compare.py
249 lines (156 loc) · 6.93 KB
/
compute_gradients_Compare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import numpy as np
import sys
sys.path.append('code_compare')
from g_bisection import g_bisection as g_b
import pdb
def compute_gradients_compare(z_data, A, alpha, w, k, b, t, newobject):
# COMPUTE_GRADIENTS gets gradients for cost at time t
# w.r.t. parameters at subnetwork i
# INPUT VARIABLES
# t: integer, is the time instant
# i: integer, is the subnetwork index
# z_data N x T array, containing the given z data
# N: number of sensors
# T: number of time instants
N, T = z_data.shape
# A: N x N x P array, containing VAR parameter matrices
N,N,P = A.shape
# alpha: N x M array, alpha parameters
# M: number of units in subnetwork
N2, M = alpha.shape
assert(N2 == N)
# w: N x M array, w parameters
# k: N x M array, k parameters
# b: N array, b parameters
# gradient of g w.r.t theta #!LEq(17)
# Function definitions
def sigmoid(l):
return 1/(1+np.exp(-l))
def dgalpha(x,i):
return -1*(dfalpha(x,i)/ f_prime(x,i))
def dgw(x,i):
return -1*(dfw(x,i)/ f_prime(x,i))
def dgk(x,i):
return -1*(dfk(x,i)/ f_prime(x,i))
def dgb(x,i):
return -1*(dfb(x,i)/ f_prime(x,i))
# definitiion of f_prime dfalha, dfw, dfk and dfb (being written as optional just to verify)
def f_prime(x,i):
a=0
for m in range(M):
a = a + alpha[i][m] * sigmoid(w[i][m]*x-k[i][m]) * (1-sigmoid(w[i][m]*x-k[i][m]))*(w[i][m])
return a
def dfalpha(x,i):
return sigmoid(w[i][:]*x-k[i][:])
def dfb(x,i):
return 1
def dfk(x,i):
return alpha[i][:] * sigmoid(w[i][:]*x-k[i][:]) * (1-sigmoid(w[i][:]*x-k[i][:]))*(-1)
def dfw(x,i):
return alpha[i][:] * sigmoid(w[i][:]*x-k[i][:]) * (1-sigmoid(w[i][:]*x-k[i][:]))*(x)
# core functions
def f(x,i):
a = b[i]
for m in range(M):
a = a + alpha[i][m] * sigmoid(w[i][m]*x-k[i][m])
return a
def g(x,i):
return g_b(x, i, alpha, w, k, b)
# Forward pass (function evaluation)
# (You can use your functions f, g, etc)
#!LEq(7) from the paper
tilde_y_tm = np.zeros((N, P)) #!LEq(7a) from the paper # here i_prime is used instead of i
for i_prime in range(N):
for p in range(1,P+1):
assert t-p >= 0
z_i_tmp = z_data[i_prime, t-p]
tilde_y_tm[i_prime, p-1] = g(z_i_tmp,i_prime)
z_i_tmp_i = z_data[:,t-P:t]
v_z_hat, v_y_hat, m_y_tilde = newobject.forward(z_i_tmp_i)
hat_y_t = np.zeros((N)) #!LEq(7b)
for i_prime in range(N):
for p in range(P):
for j in range(N):
hat_y_t[i_prime] = hat_y_t[i_prime] + A[i_prime][j][p]*tilde_y_tm[j][p]
hat_y_t2 = np.zeros((N)) #!LEq(7b)
for p in range(P): #this equation is just to comprae different looping and matrix systems. of theq 7b
hat_y_t2 = hat_y_t2 + A[:,:,p]@tilde_y_tm[:,p]
if not np.linalg.norm(hat_y_t - hat_y_t2) < 1e-5:
print("error in looping and matrix")
pdb.set_trace()
hat_z_t = np.zeros((N)) #!LEq(7c)
for i_prime in range(N):
hat_z_t[i_prime] = f(hat_y_t[i_prime],i_prime)
print("\nforward compare for t is",t)
print("\n\nabsolute sum of tilde_y_tm - m_y_tilde",np.sum(np.abs(tilde_y_tm - m_y_tilde)))
print("absolute sum of hat_y_t - v_y_hat",np.sum(np.abs(hat_y_t - v_y_hat) ))
print("absolute sum of hat_z_t - v_z_hat",np.sum(np.abs(hat_z_t - v_z_hat) ))
#pdb.set_trace()
# computing cost #!LEq(7d) and vector S #!LEq(8)
cost_i = [0]*T
cost = 0
S = 2*( hat_z_t - z_data[:,t])/hat_z_t
for i_prime in range(N):
cost = cost + np.square(S[i_prime]/2)
##################### adding sparsity to the cost
cost_i[t] = cost/(N*T)
# cost_i_l[t] = newobject.compute_cost(v_z_hat,z_data[:,t])
# print("\n\ncost comparison at time t is",np.abs(cost_i[t] - cost_i_l[t]))
# Backward pass (backpropagation)
# (You can use your functions f_prime, etc)
#!Leq(17) from the paper
#!LEq(13) from the paper
dc_dalpha_l, dc_dk_l, dc_dw_l, dc_db_l, dc_dA_l = newobject.backward(z_i_tmp_i,z_data[:,t],v_z_hat,v_y_hat,m_y_tilde)
dc_dalpha = np.zeros((N,M))
dc_dw = np.zeros((N,M))
dc_dk = np.zeros((N,M))
dc_db = np.zeros((N))
for i in range(N):
# look at the equations from the paper and change undercore i to general form carefully
#pdb.set_trace()
for n in range(N):
dc_dalpha_i_a = 0
for p in range(1,P+1):
dc_dalpha_i_a = dc_dalpha_i_a + A[n][i][p-1]*dgalpha(z_data[i][t-p],i)
dc_dalpha[i,:] = dc_dalpha[i,:] + S[n]*f_prime(hat_y_t[n],n)*dc_dalpha_i_a
dc_dalpha[i,:] = dc_dalpha[i,:] + S[i]*dfalpha(hat_y_t[i],i)
#dc_dalpha[i,:] = -1*dc_dalpha[i,:]
for n in range(N):
dc_dw_i_a = 0
for p in range(1,P+1):
dc_dw_i_a = dc_dw_i_a + A[n][i][p-1]*dgw(z_data[i][t-p],i)
dc_dw[i,:] = dc_dw[i,:] + S[n]*f_prime(hat_y_t[n],n)*dc_dw_i_a
dc_dw[i,:] = dc_dw[i,:] + S[i]*dfw(hat_y_t[i],i)
for n in range(N):
dc_dk_i_a = 0
for p in range(1,P+1):
dc_dk_i_a = dc_dk_i_a + A[n][i][p-1]*dgk(z_data[i][t-p],i)
dc_dk[i,:]= dc_dk[i,:]+ S[n]*f_prime(hat_y_t[n],n)*dc_dk_i_a
dc_dk[i,:] = dc_dk[i,:]+ S[i]*dfk(hat_y_t[i],i)
for n in range(N):
dc_db_i_a = 0
for p in range(1,P+1):
dc_dbi_a = dc_db_i_a + A[n][i][p-1]*dgb(z_data[i][t-p],i)
dc_db[i] = dc_db[i] + S[n]*f_prime(hat_y_t[n],n)*dc_dbi_a
dc_db[i]= dc_db[i] + S[i]*dfb(hat_y_t[i],i)
dC_dA = np.zeros((N,N,P))
for j in range(N):
for p in range(1,P+1):
dC_dA[i][j][p-1] = S[i]*f_prime(hat_y_t[n],i)*tilde_y_tm[j, p-1]
pdb.set_trace()
# Hint: numpy has functionality to add/multiply whole vectors.
# Use it, and your code will be shorter, similar to the paper
# and, more importantly, easier to debug =)
#OUTPUT VARIABLES:
# dc_dalpha_i M array, gradient of cost at time t
# w.r.t. parameter vector alpha_i
# dc_dw_i M array, gradient of cost time t
# w.r.t. parameter vector w_i
# dc_dk_i M array, gradient w.r.t. k_i
# dc_db_i scalar, derivative w.r.t. b_i
print("\ndC_dA comparison",np.sum(np.abs(dC_dA-dc_dA_l)))
print("dC_dalpha comparison",np.sum(np.abs(dc_dalpha-dc_dalpha_l)))
print("dc_dw comparsion",np.sum(np.abs(dc_dw - dc_dw_l)))
print("dc_dk comparison",np.sum(np.abs(dc_dk-dc_dk_l)))
#pdb.set_trace()
return dC_dA, dc_dalpha, dc_dw, dc_dk, dc_db, cost,hat_z_t