-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNonlinearVAR.py
199 lines (168 loc) · 7.7 KB
/
NonlinearVAR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
from nlTools import *
import numpy as np
import pdb
from projection_simplex import projection_simplex_sort as proj_simplex
import torch
import pickle
class NonlinearVAR:
def __init__(self, N, M, P, filename_tosave = 'model.nlv'):
self.A = np.zeros([N, N, P])
self.nnl = [NodalNonlinearity(M) for m in range(M)]
self.filename_tosave = filename_tosave
@staticmethod
def from_pickle(filename):
infile = open(filename,'rb')
new_obj = pickle.load(infile)
assert type(new_obj) is NonlinearVAR
infile.close()
return new_obj
def to_pickle(self, filename=None):
if filename is None:
filename = self.filename_tosave
outfile = open(filename,'wb')
pickle.dump(self, outfile)
outfile.close()
def forward(self, m_z_previous):
# m_z_previous: {z[t-p]}, p=1..P
N, P = m_z_previous.shape
assert(N == self.A.shape[0])
assert(P == self.A.shape[2])
m_y_tilde = np.zeros([N, P])
for n in range(N):
for p in range(P):
m_y_tilde[n, p] = self.nnl[n].g(m_z_previous[n,p]) #!LEq(6)
v_y_hat = np.zeros(N)
for p in range(P):
v_y_hat = v_y_hat + self.A[:,:, p] @ m_y_tilde[:,p] #!LEq(7)
v_z_hat = np.zeros(N)
for n in range(N):
v_z_hat[n]= self.nnl[n].f(v_y_hat[n]) #!LEq(8)
return v_z_hat, v_y_hat, m_y_tilde
def compute_cost(self, v_z_hat, v_z_t): #could be static
v_cost = (v_z_t - v_z_hat)**2
total_cost = sum(v_cost) #!LEq(9)
return total_cost
def backward(self, m_z_previous, v_z_t, v_z_hat, v_y_hat, m_y_tilde): #kevin changed funciton signature
N, P = m_z_previous.shape # from tuple_in to v_z_hat, v_y_hat, m_y_tilde
assert(N == self.A.shape[0])
assert(P == self.A.shape[2])
assert(N == v_z_t.shape[0])
#v_z_hat, v_y_hat, m_y_tilde = tuple_in
v_s = 2*(v_z_hat - v_z_t) #LEq(10b)
# Gradients with respect to nonlinearity parameters:
dc_dalpha = N*[[]]
dc_dk = N*[[]]
dc_dw = N*[[]]
dc_db = N*[[]]
for i in range(N):
df_dalpha_i, df_dk_i, df_dw_i, df_db_i = self.nnl[i].gradients_f(v_y_hat[i])
dc_dalpha[i] = v_s[i]* df_dalpha_i
dc_dk[i] = v_s[i]* df_dk_i
dc_dw[i] = v_s[i]* df_dw_i
dc_db[i] = v_s[i]* df_db_i
for p in range(P):
dg_dalpha, dg_dk, dg_dw, dg_db = self.nnl[i].gradients_g(m_z_previous[i, p])
for n in range(N):
my_f_prime_n = self.nnl[n].f_prime(v_y_hat[n])
dc_dalpha[i] = dc_dalpha[i] + v_s[n]*my_f_prime_n*self.A[n, i, p]*dg_dalpha
dc_dk[i] = dc_dk[i] + v_s[n]*my_f_prime_n*self.A[n, i, p]*dg_dk
dc_dw[i] = dc_dw[i] + v_s[n]*my_f_prime_n*self.A[n, i, p]*dg_dw
dc_db[i] = dc_db[i] + v_s[n]*my_f_prime_n*self.A[n, i, p]*dg_db #!LEq(16)
# Gradient with respect to A matrices (3-way tensor form):
dc_dA = np.zeros(self.A.shape)
for i in range(N):
my_f_prime_i = self.nnl[i].f_prime(v_y_hat[i])
for p in range(P):
dc_dA[i,:,p] = v_s[i]*my_f_prime_i*m_y_tilde[:,p] #!LEq(25)
return dc_dalpha, dc_dk, dc_dw, dc_db, dc_dA
@staticmethod
def learn(m_z_train, P, M, nEpochs, zl_desired, zu_desired, eta, \
m_z_test, optimizer_handle = torch.optim.Adam, filename_prefix=''):
return learn_nonlinearVAR(m_z_train, P, M, nEpochs, \
zl_desired, zu_desired, eta, m_z_test, optimizer_handle, filename_prefix=filename_prefix)
# will not be used directly
def learn_nonlinearVAR(m_z_train, P, M, nEpochs, \
zl_desired, zu_desired, eta, m_z_test, optimizer_handle = torch.optim.Adam, filename_prefix=''):
#b_torch_optim = 1
N, T = m_z_train.shape
Nt, Tt = m_z_test.shape; assert(Nt == N)
A_initial = np.zeros([N, N, P])
nnl_initial = [nnl_randomInit(M, zl_desired[n], zu_desired[n])\
for n in range(N)] # TODO: different initializations
nlv = NonlinearVAR(N, M, P, filename_prefix)
nlv.A = A_initial
nlv.nnl = nnl_initial
cost_train = np.zeros(nEpochs)
cost_test = np.zeros(nEpochs)
# conforming Pytorch tensors
ttg = lambda array: torch.tensor(array, requires_grad = True)
t_A = ttg(nlv.A)
t_alpha = [ttg(nlv.nnl[i].alpha) for i in range(N)]
t_k = [ttg(nlv.nnl[i].k) for i in range(N)]
t_w = [ttg(nlv.nnl[i].w) for i in range(N)]
t_b = [ttg(nlv.nnl[i].b) for i in range(N)]
my_parameters = [t_A] + t_alpha + t_k + t_w + t_b
optimizer = optimizer_handle(my_parameters, lr=eta) #TODO: try rmsprop
for epoch in range(nEpochs):
print('Epoch ', epoch)
cost_test[epoch], cost_train[epoch] = \
run_an_epoch(nlv, m_z_train, m_z_test, optimizer, \
t_A, t_alpha, t_k, t_w, t_b, zl_desired, zu_desired)
nlv.to_pickle(nlv.filename_tosave+str(epoch)+'.nlv')
return nlv, cost_train, cost_test
def run_an_epoch(nlv, m_z_train, m_z_test, optimizer, \
t_A, t_alpha, t_k, t_w, t_b, zl_desired, zu_desired):
N, T = m_z_train.shape
Nt, Tt = m_z_test.shape; assert(Nt == N)
P = nlv.A.shape[2]
cost_thisEpoch_t = np.zeros(T)
#TEST (forward only)
if m_z_test is not None:
for tt in range(P, Tt): #TODO: reduce code repetition
v_z_tt = m_z_test[:, tt]
m_z_previous_t = np.zeros([N, P])
for p in range(P):
m_z_previous_t[:,p] = m_z_test[:,tt-1-p]
v_z_hat_t = nlv.forward(m_z_previous_t)[0]
cost_thisEpoch_t[tt] = nlv.compute_cost(v_z_hat_t, v_z_tt)/N
cost_test_out = np.mean(cost_thisEpoch_t)
#TRAIN (forward, backward, and SGD)
cost_thisEpoch = np.zeros(T)
for t in range(P, T):
v_z_t = m_z_train[:, t]
m_z_previous = np.zeros([N, P])
for p in range(P):
m_z_previous[:,p] = m_z_train[:,t-1-p]
#
v_z_hat, v_y_hat, m_y_tilde = nlv.forward(m_z_previous)
tuple_bInfo = (v_z_hat, v_y_hat, m_y_tilde)
cost_thisEpoch[t] = nlv.compute_cost(v_z_hat, v_z_t)/N
dc_dalpha, dc_dk, dc_dw, dc_db, dc_dA = \
nlv.backward(m_z_previous, v_z_t, tuple_bInfo)
assert (not(np.isnan(dc_dalpha).any()))
# Gradient step
#if b_torch_optim:
t_A.grad = torch.tensor(dc_dA)
for i in range(N):
t_alpha[i].grad = torch.tensor(dc_dalpha[i])
t_k[i].grad = torch.tensor(dc_dk[i])
t_w[i].grad = torch.tensor(dc_dw[i])
t_b[i].grad = torch.tensor(dc_db[i])
optimizer.step()
nlv.A = t_A.detach().numpy()
for i in range(N):
nlv.nnl[i].alpha = t_alpha[i].detach().numpy()
nlv.nnl[i].k = t_k[i].detach().numpy()
nlv.nnl[i].w = t_w[i].detach().numpy()
nlv.nnl[i].b = t_b[i].detach().numpy()
#Projection
for i in range(N):
nlv.nnl[i].b = zl_desired[i]
nlv.nnl[i].alpha = proj_simplex(nlv.nnl[i].alpha, \
zu_desired[i]-zl_desired[i])
if (abs(nlv.nnl[i].zu() - zu_desired[i])>1e-5).any() \
or(abs(nlv.nnl[i].zl() - zl_desired[i])>1e-5).any():
print('projection failed!'); pdb.set_trace()
nlv.nnl[i].w = np.maximum(0.01, nlv.nnl[i].w)
cost_train_out = np.mean(cost_thisEpoch)
return cost_test_out, cost_train_out