You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Please make sure that the boxes below are checked before you submit your issue. If your issue is an implementation question, please ask your question in the Keras-RL Google group or join the Keras-RL Gitter channel and ask there instead of filing a GitHub issue.
Thank you!
Check that you are up-to-date with the master branch of Keras-RL. You can update with: pip install git+git://github.com/keras-rl/keras-rl.git --upgrade --no-deps
Check that you are up-to-date with the master branch of Keras. You can update with: pip install git+git://github.com/fchollet/keras.git --upgrade --no-deps
Provide a link to a GitHub Gist of a Python script that can reproduce your issue (or just copy the script here if it is short). If you report an error, please include the error message and the backtrace.
importtensorflowastffromdatasetsimportload_datasetfromtransformersimportAutoTokenizer, TFAutoModelForSequenceClassification, DataCollatorWithPaddingfromtensorflow.keras.optimizersimportAdamfromtensorflow.keras.optimizers.schedulesimportPolynomialDecayfromtensorflow.keras.lossesimportSparseCategoricalCrossentropydefprepare_imdb_dataset(tokenizer):
""" Prepares the IMDB dataset for training and validation. Args: tokenizer: The tokenizer to use for text tokenization. Returns: A tuple containing the tokenized training and validation datasets. """imdb=load_dataset("imdb")
train_set=imdb['train'].map(lambdax: tokenizer(x['text'], truncation=True), batched=True)
test_set=imdb['test'].map(lambdax: tokenizer(x['text'], truncation=True), batched=True)
returntrain_set, test_settokenizer=AutoTokenizer.from_pretrained("distilbert-base-uncased")
model=TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=2)
train_set, test_set=prepare_imdb_dataset(tokenizer)
data_collator=DataCollatorWithPadding(tokenizer=tokenizer, return_tensors="tf")
tf_train_dataset=train_set.to_tf_dataset(
columns=["attention_mask", "input_ids"],
label_cols=["label"],
shuffle=True,
collate_fn=data_collator,
batch_size=8,
)
tf_validation_dataset=test_set.to_tf_dataset(
columns=["attention_mask", "input_ids"],
label_cols=["label"],
shuffle=False,
collate_fn=data_collator,
batch_size=8,
)
batch_size=16num_epochs=1num_train_steps=len(tf_train_dataset) *num_epochslr_scheduler=PolynomialDecay(
initial_learning_rate=5e-5, end_learning_rate=0.0, decay_steps=num_train_steps
)
optimizer=Adam(learning_rate=lr_scheduler)
loss=SparseCategoricalCrossentropy(from_logits=True)
model.compile(optimizer=optimizer, loss=loss, metrics=["accuracy"])
model.fit(tf_train_dataset, validation_data=tf_validation_dataset, epochs=5)
Some weights of the PyTorch model were not used when initializing the TF 2.0 model TFDistilBertForSequenceClassification: ['vocab_layer_norm.weight', 'vocab_transform.weight', 'vocab_projector.bias', 'vocab_transform.bias', 'vocab_layer_norm.bias']
- This IS expected if you are initializing TFDistilBertForSequenceClassification from a PyTorch model trained on another task or with another architecture (e.g. initializing a TFBertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing TFDistilBertForSequenceClassification from a PyTorch model that you expect to be exactly identical (e.g. initializing a TFBertForSequenceClassification model from a BertForSequenceClassification model).
Some weights or buffers of the TF 2.0 model TFDistilBertForSequenceClassification were not initialized from the PyTorch model and are newly initialized: ['pre_classifier.weight', 'pre_classifier.bias', 'classifier.weight', 'classifier.bias']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
Map: 100%
25000/25000 [00:23<00:00, 1086.84 examples/s]
Map: 100%
25000/25000 [00:20<00:00, 1304.86 examples/s]
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
[<ipython-input-17-ac80246ded67>](https://localhost:8080/#) in <cell line: 55>()
53 optimizer = Adam(learning_rate=lr_scheduler)
54 loss = SparseCategoricalCrossentropy(from_logits=True)
---> 55 model.compile(optimizer=optimizer, loss=loss, metrics=["accuracy"])
56
57 model.fit(tf_train_dataset, validation_data=tf_validation_dataset, epochs=5)
2 frames
[/usr/local/lib/python3.10/dist-packages/tf_keras/src/optimizers/__init__.py](https://localhost:8080/#) in get(identifier, **kwargs)
332 )
333 else:
--> 334 raise ValueError(
335 f"Could not interpret optimizer identifier: {identifier}"
336 )
ValueError: Could not interpret optimizer identifier: <keras.src.optimizers.adam.Adam object at 0x79d9071160e0>
The text was updated successfully, but these errors were encountered:
Please make sure that the boxes below are checked before you submit your issue. If your issue is an implementation question, please ask your question in the Keras-RL Google group or join the Keras-RL Gitter channel and ask there instead of filing a GitHub issue.
Thank you!
Check that you are up-to-date with the master branch of Keras-RL. You can update with:
pip install git+git://github.com/keras-rl/keras-rl.git --upgrade --no-deps
Check that you are up-to-date with the master branch of Keras. You can update with:
pip install git+git://github.com/fchollet/keras.git --upgrade --no-deps
Provide a link to a GitHub Gist of a Python script that can reproduce your issue (or just copy the script here if it is short). If you report an error, please include the error message and the backtrace.
The text was updated successfully, but these errors were encountered: