-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathfilelist_filtering.py
50 lines (44 loc) · 1.53 KB
/
filelist_filtering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import os
import numpy as np
import yaml
import argparse
def main(preprocess_config, model_config):
preprocessed_path = preprocess_config["path"]["preprocessed_path"]
max_seq_len = model_config["max_seq_len"]
with open(
os.path.join(preprocessed_path, "train.txt"), "r", encoding="utf-8"
) as f:
filtered_list = []
for i, line in enumerate(f.readlines()):
basename, speaker, *_ = line.strip("\n").split("|")
mel_path = os.path.join(
preprocessed_path,
"mel",
"{}-mel-{}.npy".format(speaker, basename),
)
mel = np.load(mel_path)
if mel.shape[0] <= max_seq_len:
filtered_list.append(line)
# Write Filtered Filelist
with open(os.path.join(preprocessed_path, "train_filtered.txt"), "w", encoding="utf-8") as f:
for line in filtered_list:
f.write(line)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-p",
"--preprocess_config",
type=str,
required=True,
help="path to preprocess.yaml",
)
parser.add_argument(
"-m", "--model_config", type=str, required=True, help="path to model.yaml"
)
args = parser.parse_args()
# Read Config
preprocess_config = yaml.load(
open(args.preprocess_config, "r"), Loader=yaml.FullLoader
)
model_config = yaml.load(open(args.model_config, "r"), Loader=yaml.FullLoader)
main(preprocess_config, model_config)