-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtrain.py
224 lines (187 loc) · 8.54 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import argparse
import os
import torch
import yaml
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from utils.model import get_model, get_vocoder, get_param_num
from utils.tools import to_device, log, synth_one_sample
from model import MetaStyleSpeechLossMain, MetaStyleSpeechLossDisc
from dataset import Dataset
from evaluate import evaluate
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def backward(model, optimizer, total_loss, step, grad_acc_step, grad_clip_thresh):
total_loss = total_loss / grad_acc_step
total_loss.backward()
if step % grad_acc_step == 0:
# Clipping gradients to avoid gradient explosion
nn.utils.clip_grad_norm_(model.parameters(), grad_clip_thresh)
# Update weights
optimizer.step_and_update_lr()
optimizer.zero_grad()
def main(args, configs):
print("Prepare training ...")
preprocess_config, model_config, train_config = configs
# Get dataset
dataset = Dataset(
"train_filtered.txt", preprocess_config, train_config, sort=True, drop_last=True
)
batch_size = train_config["optimizer"]["batch_size"]
group_size = 4 # Set this larger than 1 to enable sorting in Dataset
assert batch_size * group_size < len(dataset)
loader = DataLoader(
dataset,
batch_size=batch_size * group_size,
shuffle=True,
collate_fn=dataset.collate_fn,
)
# Prepare model
model, optimizer_main, optimizer_disc = get_model(args, configs, device, train=True)
model = nn.DataParallel(model)
num_param = get_param_num(model)
Loss_1 = MetaStyleSpeechLossMain(preprocess_config, model_config, train_config).to(device)
Loss_2 = MetaStyleSpeechLossDisc(preprocess_config, model_config).to(device)
print("Number of StyleSpeech Parameters:", num_param)
# Load vocoder
vocoder = get_vocoder(model_config, device)
# Init logger
for p in train_config["path"].values():
os.makedirs(p, exist_ok=True)
train_log_path = os.path.join(train_config["path"]["log_path"], "train")
val_log_path = os.path.join(train_config["path"]["log_path"], "val")
os.makedirs(train_log_path, exist_ok=True)
os.makedirs(val_log_path, exist_ok=True)
train_logger = SummaryWriter(train_log_path)
val_logger = SummaryWriter(val_log_path)
# Training
step = args.restore_step + 1
epoch = 1
meta_learning_warmup = train_config["step"]["meta_learning_warmup"]
grad_acc_step = train_config["optimizer"]["grad_acc_step"]
grad_clip_thresh = train_config["optimizer"]["grad_clip_thresh"]
total_step = train_config["step"]["total_step"]
log_step = train_config["step"]["log_step"]
save_step = train_config["step"]["save_step"]
synth_step = train_config["step"]["synth_step"]
val_step = train_config["step"]["val_step"]
outer_bar = tqdm(total=total_step, desc="Training", position=0)
outer_bar.n = args.restore_step
outer_bar.update()
while True:
inner_bar = tqdm(total=len(loader), desc="Epoch {}".format(epoch), position=1)
for batchs in loader:
for batch in batchs:
batch = to_device(batch, device)
# Warm-up Stage
if step <= meta_learning_warmup:
# Forward
output = (None, None, *model(*(batch[2:-5])))
# Meta Learning
else:
# Step 1: Update Enc_s and G
output = model.module.meta_learner_1(*(batch[2:]))
# Cal Loss
losses_1 = Loss_1(batch, output)
total_loss = losses_1[0]
# Backward
backward(model, optimizer_main, total_loss, step, grad_acc_step, grad_clip_thresh)
# Meta Learning
if step > meta_learning_warmup:
# Step 2: Update D_t and D_s
output_disc = model.module.meta_learner_2(*(batch[2:]))
losses_2 = Loss_2(batch[2], output_disc)
total_loss_disc = losses_2[0]
backward(model, optimizer_disc, total_loss_disc, step, grad_acc_step, grad_clip_thresh)
if step % log_step == 0:
if step > meta_learning_warmup:
losses = [l.item() for l in (losses_1+losses_2[1:])]
else:
losses = [l.item() for l in (losses_1+tuple([torch.zeros(1).to(device) for _ in range(3)]))]
message1 = "Step {}/{}, ".format(step, total_step)
message2 = "Total Loss: {:.4f}, Mel Loss: {:.4f}, Pitch Loss: {:.4f}, Energy Loss: {:.4f}, Duration Loss: {:.4f}, Adversarial_D_s Loss: {:.4f}, Adversarial_D_t Loss: {:.4f}, D_s Loss: {:.4f}, D_t Loss: {:.4f}, cls Loss: {:.4f}".format(
*losses
)
with open(os.path.join(train_log_path, "log.txt"), "a") as f:
f.write(message1 + message2 + "\n")
outer_bar.write(message1 + message2)
log(train_logger, step, losses=losses)
if step % synth_step == 0:
fig, wav_reconstruction, wav_prediction, tag = synth_one_sample(
batch,
output[2:],
vocoder,
model_config,
preprocess_config,
)
log(
train_logger,
fig=fig,
tag="Training/step_{}_{}".format(step, tag),
)
sampling_rate = preprocess_config["preprocessing"]["audio"][
"sampling_rate"
]
log(
train_logger,
audio=wav_reconstruction,
sampling_rate=sampling_rate,
tag="Training/step_{}_{}_reconstructed".format(step, tag),
)
log(
train_logger,
audio=wav_prediction,
sampling_rate=sampling_rate,
tag="Training/step_{}_{}_synthesized".format(step, tag),
)
if step % val_step == 0:
model.eval()
message = evaluate(model, step, configs, val_logger, vocoder, len(losses))
with open(os.path.join(val_log_path, "log.txt"), "a") as f:
f.write(message + "\n")
outer_bar.write(message)
model.train()
if step % save_step == 0:
torch.save(
{
"model": model.module.state_dict(),
"optimizer_main": optimizer_main._optimizer.state_dict(),
"optimizer_disc": optimizer_disc._optimizer.state_dict(),
},
os.path.join(
train_config["path"]["ckpt_path"],
"{}.pth.tar".format(step),
),
)
if step == total_step:
quit()
step += 1
outer_bar.update(1)
inner_bar.update(1)
epoch += 1
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--restore_step", type=int, default=0)
parser.add_argument(
"-p",
"--preprocess_config",
type=str,
required=True,
help="path to preprocess.yaml",
)
parser.add_argument(
"-m", "--model_config", type=str, required=True, help="path to model.yaml"
)
parser.add_argument(
"-t", "--train_config", type=str, required=True, help="path to train.yaml"
)
args = parser.parse_args()
# Read Config
preprocess_config = yaml.load(
open(args.preprocess_config, "r"), Loader=yaml.FullLoader
)
model_config = yaml.load(open(args.model_config, "r"), Loader=yaml.FullLoader)
train_config = yaml.load(open(args.train_config, "r"), Loader=yaml.FullLoader)
configs = (preprocess_config, model_config, train_config)
main(args, configs)