Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

small(320000.pth.tar) weights incompatibility #29

Open
ironmann250 opened this issue Nov 11, 2022 · 2 comments
Open

small(320000.pth.tar) weights incompatibility #29

ironmann250 opened this issue Nov 11, 2022 · 2 comments

Comments

@ironmann250
Copy link

`2022-11-11 22:31:08.004017: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cudart64_110.dll

Device of PortaSpeech: cpu
Traceback (most recent call last):
File "synthesize.py", line 153, in
model = get_model(args, configs, device, train=False)
File "D:\projects\PortaSpeech\utils\model.py", line 21, in get_model
model.load_state_dict(ckpt["model"])
File "C:\ProgramData\Miniconda3\envs\tts_env\lib\site-packages\torch\nn\modules\module.py", line 1223, in load_state_dict
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
RuntimeError: Error(s) in loading state_dict for PortaSpeech:
Missing key(s) in state_dict: "linguistic_encoder.phoneme_encoder.attn_layers.3.emb_rel_k", "linguistic_encoder.phoneme_encoder.attn_layers.3.emb_rel_v", "linguistic_encoder.phoneme_encoder.attn_layers.3.conv_q.weight", "linguistic_encoder.phoneme_encoder.attn_layers.3.conv_q.bias", "linguistic_encoder.phoneme_encoder.attn_layers.3.conv_k.weight", "linguistic_encoder.phoneme_encoder.attn_layers.3.conv_k.bias", "linguistic_encoder.phoneme_encoder.attn_layers.3.conv_v.weight", "linguistic_encoder.phoneme_encoder.attn_layers.3.conv_v.bias", "linguistic_encoder.phoneme_encoder.attn_layers.3.conv_o.weight", "linguistic_encoder.phoneme_encoder.attn_layers.3.conv_o.bias", "linguistic_encoder.phoneme_encoder.norm_layers_1.3.gamma", "linguistic_encoder.phoneme_encoder.norm_layers_1.3.beta", "linguistic_encoder.phoneme_encoder.ffn_layers.3.conv.weight", "linguistic_encoder.phoneme_encoder.ffn_layers.3.conv.bias", "linguistic_encoder.phoneme_encoder.norm_layers_2.3.gamma", "linguistic_encoder.phoneme_encoder.norm_layers_2.3.beta", "linguistic_encoder.word_encoder.attn_layers.3.emb_rel_k", "linguistic_encoder.word_encoder.attn_layers.3.emb_rel_v", "linguistic_encoder.word_encoder.attn_layers.3.conv_q.weight", "linguistic_encoder.word_encoder.attn_layers.3.conv_q.bias", "linguistic_encoder.word_encoder.attn_layers.3.conv_k.weight", "linguistic_encoder.word_encoder.attn_layers.3.conv_k.bias", "linguistic_encoder.word_encoder.attn_layers.3.conv_v.weight", "linguistic_encoder.word_encoder.attn_layers.3.conv_v.bias", "linguistic_encoder.word_encoder.attn_layers.3.conv_o.weight", "linguistic_encoder.word_encoder.attn_layers.3.conv_o.bias", "linguistic_encoder.word_encoder.norm_layers_1.3.gamma", "linguistic_encoder.word_encoder.norm_layers_1.3.beta", "linguistic_encoder.word_encoder.ffn_layers.3.conv.weight", "linguistic_encoder.word_encoder.ffn_layers.3.conv.bias", "linguistic_encoder.word_encoder.norm_layers_2.3.gamma", "linguistic_encoder.word_encoder.norm_layers_2.3.beta", "variational_generator.flow.flows.0.enc.in_layers.3.bias", "variational_generator.flow.flows.0.enc.in_layers.3.weight_g", "variational_generator.flow.flows.0.enc.in_layers.3.weight_v", "variational_generator.flow.flows.0.enc.res_skip_layers.3.bias", "variational_generator.flow.flows.0.enc.res_skip_layers.3.weight_g", "variational_generator.flow.flows.0.enc.res_skip_layers.3.weight_v", "variational_generator.flow.flows.2.enc.in_layers.3.bias", "variational_generator.flow.flows.2.enc.in_layers.3.weight_g", "variational_generator.flow.flows.2.enc.in_layers.3.weight_v", "variational_generator.flow.flows.2.enc.res_skip_layers.3.bias", "variational_generator.flow.flows.2.enc.res_skip_layers.3.weight_g", "variational_generator.flow.flows.2.enc.res_skip_layers.3.weight_v", "variational_generator.flow.flows.4.enc.in_layers.3.bias", "variational_generator.flow.flows.4.enc.in_layers.3.weight_g", "variational_generator.flow.flows.4.enc.in_layers.3.weight_v", "variational_generator.flow.flows.4.enc.res_skip_layers.3.bias", "variational_generator.flow.flows.4.enc.res_skip_layers.3.weight_g", "variational_generator.flow.flows.4.enc.res_skip_layers.3.weight_v", "variational_generator.flow.flows.6.enc.in_layers.3.bias", "variational_generator.flow.flows.6.enc.in_layers.3.weight_g", "variational_generator.flow.flows.6.enc.in_layers.3.weight_v", "variational_generator.flow.flows.6.enc.res_skip_layers.3.bias", "variational_generator.flow.flows.6.enc.res_skip_layers.3.weight_g", "variational_generator.flow.flows.6.enc.res_skip_layers.3.weight_v", "variational_generator.dec_wn.in_layers.3.bias", "variational_generator.dec_wn.in_layers.3.weight_g", "variational_generator.dec_wn.in_layers.3.weight_v", "variational_generator.dec_wn.res_skip_layers.3.bias", "variational_generator.dec_wn.res_skip_layers.3.weight_g", "variational_generator.dec_wn.res_skip_layers.3.weight_v", "postnet.flows.24.logs", "postnet.flows.24.bias", "postnet.flows.25.weight", "postnet.flows.26.start.bias", "postnet.flows.26.start.weight_g", "postnet.flows.26.start.weight_v", "postnet.flows.26.end.weight", "postnet.flows.26.end.bias", "postnet.flows.26.cond_layer.bias", "postnet.flows.26.cond_layer.weight_g", "postnet.flows.26.cond_layer.weight_v", "postnet.flows.26.wn.in_layers.0.bias", "postnet.flows.26.wn.in_layers.0.weight_g", "postnet.flows.26.wn.in_layers.0.weight_v", "postnet.flows.26.wn.in_layers.1.bias", "postnet.flows.26.wn.in_layers.1.weight_g", "postnet.flows.26.wn.in_layers.1.weight_v", "postnet.flows.26.wn.in_layers.2.bias", "postnet.flows.26.wn.in_layers.2.weight_g", "postnet.flows.26.wn.in_layers.2.weight_v", "postnet.flows.26.wn.res_skip_layers.0.bias", "postnet.flows.26.wn.res_skip_layers.0.weight_g", "postnet.flows.26.wn.res_skip_layers.0.weight_v", "postnet.flows.26.wn.res_skip_layers.1.bias", "postnet.flows.26.wn.res_skip_layers.1.weight_g", "postnet.flows.26.wn.res_skip_layers.1.weight_v", "postnet.flows.26.wn.res_skip_layers.2.bias", "postnet.flows.26.wn.res_skip_layers.2.weight_g", "postnet.flows.26.wn.res_skip_layers.2.weight_v", "postnet.flows.27.logs", "postnet.flows.27.bias", "postnet.flows.28.weight", "postnet.flows.29.start.bias", "postnet.flows.29.start.weight_g", "postnet.flows.29.start.weight_v", "postnet.flows.29.end.weight", "postnet.flows.29.end.bias", "postnet.flows.29.cond_layer.bias", "postnet.flows.29.cond_layer.weight_g", "postnet.flows.29.cond_layer.weight_v", "postnet.flows.29.wn.in_layers.0.bias", "postnet.flows.29.wn.in_layers.0.weight_g", "postnet.flows.29.wn.in_layers.0.weight_v", "postnet.flows.29.wn.in_layers.1.bias", "postnet.flows.29.wn.in_layers.1.weight_g", "postnet.flows.29.wn.in_layers.1.weight_v", "postnet.flows.29.wn.in_layers.2.bias", "postnet.flows.29.wn.in_layers.2.weight_g", "postnet.flows.29.wn.in_layers.2.weight_v", "postnet.flows.29.wn.res_skip_layers.0.bias", "postnet.flows.29.wn.res_skip_layers.0.weight_g", "postnet.flows.29.wn.res_skip_layers.0.weight_v", "postnet.flows.29.wn.res_skip_layers.1.bias", "postnet.flows.29.wn.res_skip_layers.1.weight_g", "postnet.flows.29.wn.res_skip_layers.1.weight_v", "postnet.flows.29.wn.res_skip_layers.2.bias", "postnet.flows.29.wn.res_skip_layers.2.weight_g", "postnet.flows.29.wn.res_skip_layers.2.weight_v", "postnet.flows.30.logs", "postnet.flows.30.bias", "postnet.flows.31.weight", "postnet.flows.32.start.bias", "postnet.flows.32.start.weight_g", "postnet.flows.32.start.weight_v", "postnet.flows.32.end.weight", "postnet.flows.32.end.bias", "postnet.flows.32.cond_layer.bias", "postnet.flows.32.cond_layer.weight_g", "postnet.flows.32.cond_layer.weight_v", "postnet.flows.32.wn.in_layers.0.bias", "postnet.flows.32.wn.in_layers.0.weight_g", "postnet.flows.32.wn.in_layers.0.weight_v", "postnet.flows.32.wn.in_layers.1.bias", "postnet.flows.32.wn.in_layers.1.weight_g", "postnet.flows.32.wn.in_layers.1.weight_v", "postnet.flows.32.wn.in_layers.2.bias", "postnet.flows.32.wn.in_layers.2.weight_g", "postnet.flows.32.wn.in_layers.2.weight_v", "postnet.flows.32.wn.res_skip_layers.0.bias", "postnet.flows.32.wn.res_skip_layers.0.weight_g", "postnet.flows.32.wn.res_skip_layers.0.weight_v", "postnet.flows.32.wn.res_skip_layers.1.bias", "postnet.flows.32.wn.res_skip_layers.1.weight_g", "postnet.flows.32.wn.res_skip_layers.1.weight_v", "postnet.flows.32.wn.res_skip_layers.2.bias", "postnet.flows.32.wn.res_skip_layers.2.weight_g", "postnet.flows.32.wn.res_skip_layers.2.weight_v", "postnet.flows.33.logs", "postnet.flows.33.bias", "postnet.flows.34.weight", "postnet.flows.35.start.bias", "postnet.flows.35.start.weight_g", "postnet.flows.35.start.weight_v", "postnet.flows.35.end.weight", "postnet.flows.35.end.bias", "postnet.flows.35.cond_layer.bias", "postnet.flows.35.cond_layer.weight_g", "postnet.flows.35.cond_layer.weight_v", "postnet.flows.35.wn.in_layers.0.bias", "postnet.flows.35.wn.in_layers.0.weight_g", "postnet.flows.35.wn.in_layers.0.weight_v", "postnet.flows.35.wn.in_layers.1.bias", "postnet.flows.35.wn.in_layers.1.weight_g", "postnet.flows.35.wn.in_layers.1.weight_v", "postnet.flows.35.wn.in_layers.2.bias", "postnet.flows.35.wn.in_layers.2.weight_g", "postnet.flows.35.wn.in_layers.2.weight_v", "postnet.flows.35.wn.res_skip_layers.0.bias", "postnet.flows.35.wn.res_skip_layers.0.weight_g", "postnet.flows.35.wn.res_skip_layers.0.weight_v", "postnet.flows.35.wn.res_skip_layers.1.bias", "postnet.flows.35.wn.res_skip_layers.1.weight_g", "postnet.flows.35.wn.res_skip_layers.1.weight_v", "postnet.flows.35.wn.res_skip_layers.2.bias", "postnet.flows.35.wn.res_skip_layers.2.weight_g", "postnet.flows.35.wn.res_skip_layers.2.weight_v".
size mismatch for linguistic_encoder.abs_position_enc: copying a param with shape torch.Size([1, 1001, 128]) from checkpoint, the shape in current model is torch.Size([1, 1001, 192]).
size mismatch for linguistic_encoder.kv_position_enc: copying a param with shape torch.Size([1, 1001, 128]) from checkpoint, the shape in current model is torch.Size([1, 1001, 192]).
size mismatch for linguistic_encoder.q_position_enc: copying a param with shape torch.Size([1, 1001, 128]) from checkpoint, the shape in current model is torch.Size([1, 1001, 192]).
size mismatch for linguistic_encoder.src_emb.weight: copying a param with shape torch.Size([361, 128]) from checkpoint, the shape in current model is torch.Size([361, 192]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.0.emb_rel_k: copying a param with shape torch.Size([1, 9, 64]) from checkpoint, the shape in current model is torch.Size([1, 9, 96]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.0.emb_rel_v: copying a param with shape torch.Size([1, 9, 64]) from checkpoint, the shape in current model is torch.Size([1, 9, 96]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.0.conv_q.weight: copying a param with shape torch.Size([128, 128, 1]) from checkpoint, the shape in current model is torch.Size([192, 192, 1]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.0.conv_q.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.0.conv_k.weight: copying a param with shape torch.Size([128, 128, 1]) from checkpoint, the shape in current model is torch.Size([192, 192, 1]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.0.conv_k.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.0.conv_v.weight: copying a param with shape torch.Size([128, 128, 1]) from checkpoint, the shape in current model is torch.Size([192, 192, 1]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.0.conv_v.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.0.conv_o.weight: copying a param with shape torch.Size([128, 128, 1]) from checkpoint, the shape in current model is torch.Size([192, 192, 1]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.0.conv_o.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.1.emb_rel_k: copying a param with shape torch.Size([1, 9, 64]) from checkpoint, the shape in current model is torch.Size([1, 9, 96]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.1.emb_rel_v: copying a param with shape torch.Size([1, 9, 64]) from checkpoint, the shape in current model is torch.Size([1, 9, 96]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.1.conv_q.weight: copying a param with shape torch.Size([128, 128, 1]) from checkpoint, the shape in current model is torch.Size([192, 192, 1]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.1.conv_q.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.1.conv_k.weight: copying a param with shape torch.Size([128, 128, 1]) from checkpoint, the shape in current model is torch.Size([192, 192, 1]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.1.conv_k.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.1.conv_v.weight: copying a param with shape torch.Size([128, 128, 1]) from checkpoint, the shape in current model is torch.Size([192, 192, 1]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.1.conv_v.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.1.conv_o.weight: copying a param with shape torch.Size([128, 128, 1]) from checkpoint, the shape in current model is torch.Size([192, 192, 1]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.1.conv_o.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.2.emb_rel_k: copying a param with shape torch.Size([1, 9, 64]) from checkpoint, the shape in current model is torch.Size([1, 9, 96]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.2.emb_rel_v: copying a param with shape torch.Size([1, 9, 64]) from checkpoint, the shape in current model is torch.Size([1, 9, 96]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.2.conv_q.weight: copying a param with shape torch.Size([128, 128, 1]) from checkpoint, the shape in current model is torch.Size([192, 192, 1]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.2.conv_q.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.2.conv_k.weight: copying a param with shape torch.Size([128, 128, 1]) from checkpoint, the shape in current model is torch.Size([192, 192, 1]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.2.conv_k.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.2.conv_v.weight: copying a param with shape torch.Size([128, 128, 1]) from checkpoint, the shape in current model is torch.Size([192, 192, 1]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.2.conv_v.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.2.conv_o.weight: copying a param with shape torch.Size([128, 128, 1]) from checkpoint, the shape in current model is torch.Size([192, 192, 1]).
size mismatch for linguistic_encoder.phoneme_encoder.attn_layers.2.conv_o.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.phoneme_encoder.norm_layers_1.0.gamma: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.phoneme_encoder.norm_layers_1.0.beta: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.phoneme_encoder.norm_layers_1.1.gamma: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.phoneme_encoder.norm_layers_1.1.beta: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.phoneme_encoder.norm_layers_1.2.gamma: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.phoneme_encoder.norm_layers_1.2.beta: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.phoneme_encoder.ffn_layers.0.conv.weight: copying a param with shape torch.Size([128, 128, 3]) from checkpoint, the shape in current model is torch.Size([192, 192, 5]).
size mismatch for linguistic_encoder.phoneme_encoder.ffn_layers.0.conv.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.phoneme_encoder.ffn_layers.1.conv.weight: copying a param with shape torch.Size([128, 128, 3]) from checkpoint, the shape in current model is torch.Size([192, 192, 5]).
size mismatch for linguistic_encoder.phoneme_encoder.ffn_layers.1.conv.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.phoneme_encoder.ffn_layers.2.conv.weight: copying a param with shape torch.Size([128, 128, 3]) from checkpoint, the shape in current model is torch.Size([192, 192, 5]).
size mismatch for linguistic_encoder.phoneme_encoder.ffn_layers.2.conv.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.phoneme_encoder.norm_layers_2.0.gamma: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.phoneme_encoder.norm_layers_2.0.beta: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.phoneme_encoder.norm_layers_2.1.gamma: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.phoneme_encoder.norm_layers_2.1.beta: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.phoneme_encoder.norm_layers_2.2.gamma: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.phoneme_encoder.norm_layers_2.2.beta: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.word_encoder.attn_layers.0.emb_rel_k: copying a param with shape torch.Size([1, 9, 64]) from checkpoint, the shape in current model is torch.Size([1, 9, 96]).
size mismatch for linguistic_encoder.word_encoder.attn_layers.0.emb_rel_v: copying a param with shape torch.Size([1, 9, 64]) from checkpoint, the shape in current model is torch.Size([1, 9, 96]).
size mismatch for linguistic_encoder.word_encoder.attn_layers.0.conv_q.weight: copying a param with shape torch.Size([128, 128, 1]) from checkpoint, the shape in current model is torch.Size([192, 192, 1]).
size mismatch for linguistic_encoder.word_encoder.attn_layers.0.conv_q.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.word_encoder.attn_layers.0.conv_k.weight: copying a param with shape torch.Size([128, 128, 1]) from checkpoint, the shape in current model is torch.Size([192, 192, 1]).
size mismatch for linguistic_encoder.word_encoder.attn_layers.0.conv_k.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.word_encoder.attn_layers.0.conv_v.weight: copying a param with shape torch.Size([128, 128, 1]) from checkpoint, the shape in current model is torch.Size([192, 192, 1]).
size mismatch for linguistic_encoder.word_encoder.attn_layers.0.conv_v.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.word_encoder.attn_layers.0.conv_o.weight: copying a param with shape torch.Size([128, 128, 1]) from checkpoint, the shape in current model is torch.Size([192, 192, 1]).
size mismatch for linguistic_encoder.word_encoder.attn_layers.0.conv_o.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.word_encoder.attn_layers.1.emb_rel_k: copying a param with shape torch.Size([1, 9, 64]) from checkpoint, the shape in current model is torch.Size([1, 9, 96]).
size mismatch for linguistic_encoder.word_encoder.attn_layers.1.emb_rel_v: copying a param with shape torch.Size([1, 9, 64]) from checkpoint, the shape in current model is torch.Size([1, 9, 96]).
size mismatch for linguistic_encoder.word_encoder.attn_layers.1.conv_q.weight: copying a param with shape torch.Size([128, 128, 1]) from checkpoint, the shape in current model is torch.Size([192, 192, 1]).
size mismatch for linguistic_encoder.word_encoder.attn_layers.1.conv_q.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.word_encoder.attn_layers.1.conv_k.weight: copying a param with shape torch.Size([128, 128, 1]) from checkpoint, the shape in current model is torch.Size([192, 192, 1]).
size mismatch for linguistic_encoder.word_encoder.attn_layers.1.conv_k.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.word_encoder.attn_layers.1.conv_v.weight: copying a param with shape torch.Size([128, 128, 1]) from checkpoint, the shape in current model is torch.Size([192, 192, 1]).
size mismatch for linguistic_encoder.word_encoder.attn_layers.1.conv_v.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.word_encoder.attn_layers.1.conv_o.weight: copying a param with shape torch.Size([128, 128, 1]) from checkpoint, the shape in current model is torch.Size([192, 192, 1]).
size mismatch for linguistic_encoder.word_encoder.attn_layers.1.conv_o.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([192]).
size mismatch for linguistic_encoder.word_encoder.attn_layers.2.emb_rel_k: copying a param with shape torch.Size([1, 9, 64]) from...`

@Frei2
Copy link

Frei2 commented Mar 4, 2024

@ironmann250 Hello! Can I ask that whether you train this model (portaspeech) under windows system?

@ironmann250
Copy link
Author

Yes, windows 10

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants