-
Notifications
You must be signed in to change notification settings - Fork 36
/
preprocessor.py
365 lines (316 loc) · 14 KB
/
preprocessor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import os
import re
import random
import json
import tgt
import librosa
import numpy as np
import pyworld as pw
from scipy.stats import betabinom
from scipy.interpolate import interp1d
from sklearn.preprocessing import StandardScaler
from tqdm import tqdm
from pathlib import Path
import audio as Audio
from model import PreDefinedEmbedder
from utils.tools import plot_embedding, word_level_subdivision
class Preprocessor:
def __init__(self, preprocess_config, model_config, train_config):
random.seed(train_config['seed'])
self.preprocess_config = preprocess_config
self.multi_speaker = model_config["multi_speaker"]
self.corpus_dir = preprocess_config["path"]["corpus_path"]
self.in_dir = preprocess_config["path"]["raw_path"]
self.out_dir = preprocess_config["path"]["preprocessed_path"]
self.val_size = preprocess_config["preprocessing"]["val_size"]
self.sampling_rate = preprocess_config["preprocessing"]["audio"]["sampling_rate"]
self.hop_length = preprocess_config["preprocessing"]["stft"]["hop_length"]
self.sort_data = preprocess_config["preprocessing"]["sort_data"]
self.sub_divide_word = preprocess_config["preprocessing"]["text"]["sub_divide_word"]
self.max_phoneme_num = preprocess_config["preprocessing"]["text"]["max_phoneme_num"]
self.beta_binomial_scaling_factor = preprocess_config["preprocessing"]["aligner"]["beta_binomial_scaling_factor"]
self.STFT = Audio.stft.TacotronSTFT(
preprocess_config["preprocessing"]["stft"]["filter_length"],
preprocess_config["preprocessing"]["stft"]["hop_length"],
preprocess_config["preprocessing"]["stft"]["win_length"],
preprocess_config["preprocessing"]["mel"]["n_mel_channels"],
preprocess_config["preprocessing"]["audio"]["sampling_rate"],
preprocess_config["preprocessing"]["mel"]["mel_fmin"],
preprocess_config["preprocessing"]["mel"]["mel_fmax"],
)
self.val_prior = self.val_prior_names(
os.path.join(self.out_dir, "val.txt"))
self.speaker_emb = None
self.in_sub_dirs = [p for p in os.listdir(
self.in_dir) if os.path.isdir(os.path.join(self.in_dir, p))]
if self.multi_speaker and preprocess_config["preprocessing"]["speaker_embedder"] != "none":
self.speaker_emb = PreDefinedEmbedder(preprocess_config)
self.speaker_emb_dict = self._init_spker_embeds(self.in_sub_dirs)
def _init_spker_embeds(self, spkers):
spker_embeds = dict()
for spker in spkers:
spker_embeds[spker] = list()
return spker_embeds
def val_prior_names(self, val_prior_path):
val_prior_names = set()
if os.path.isfile(val_prior_path):
print("Load pre-defined validation set...")
with open(val_prior_path, "r", encoding="utf-8") as f:
for m in f.readlines():
val_prior_names.add(m.split("|")[0])
return list(val_prior_names)
else:
return None
def build_from_path(self):
embedding_dir = os.path.join(self.out_dir, "spker_embed")
os.makedirs((os.path.join(self.out_dir, "mel")), exist_ok=True)
os.makedirs((os.path.join(self.out_dir, "duration")), exist_ok=True)
os.makedirs(
(os.path.join(self.out_dir, "phones_per_word")), exist_ok=True)
os.makedirs((os.path.join(self.out_dir, "attn_prior")), exist_ok=True)
os.makedirs(embedding_dir, exist_ok=True)
print("Processing Data ...")
out = list()
train = list()
val = list()
n_frames = 0
max_seq_len = -float('inf')
mel_frame_len_dict = dict()
skip_speakers = set()
for embedding_name in os.listdir(embedding_dir):
skip_speakers.add(embedding_name.split("-")[0])
# Preprocess
speakers = {}
for i, speaker in enumerate(tqdm(self.in_sub_dirs)):
save_speaker_emb = self.speaker_emb is not None and speaker not in skip_speakers
if os.path.isdir(os.path.join(self.in_dir, speaker)):
speakers[speaker] = i
for wav_name in tqdm(os.listdir(os.path.join(self.in_dir, speaker))):
if ".wav" not in wav_name:
continue
basename = wav_name.split(".")[0]
tg_path = os.path.join(
self.out_dir, "TextGrid", speaker, "{}.TextGrid".format(
basename)
)
if os.path.exists(tg_path):
ret = self.process_utterance(
tg_path, speaker, basename, save_speaker_emb)
if ret is None:
continue
else:
info, n, spker_embed = ret
if self.val_prior is not None:
if basename not in self.val_prior:
train.append(info)
else:
val.append(info)
else:
out.append(info)
if save_speaker_emb:
self.speaker_emb_dict[speaker].append(spker_embed)
if n > max_seq_len:
max_seq_len = n
n_frames += n
mel_frame_len_dict[basename] = n
# Calculate and save mean speaker embedding of this speaker
if save_speaker_emb:
spker_embed_filename = '{}-spker_embed.npy'.format(speaker)
np.save(os.path.join(self.out_dir, 'spker_embed', spker_embed_filename),
np.mean(self.speaker_emb_dict[speaker], axis=0), allow_pickle=False)
# Save files
with open(os.path.join(self.out_dir, "speakers.json"), "w") as f:
f.write(json.dumps(speakers))
with open(os.path.join(self.out_dir, "stats.json"), "w") as f:
stats = {
"max_seq_len": max_seq_len
}
f.write(json.dumps(stats))
print(
"Total time: {} hours".format(
n_frames * self.hop_length / self.sampling_rate / 3600
)
)
if self.speaker_emb is not None:
print("Plot speaker embedding...")
plot_embedding(
self.out_dir, *self.load_embedding(embedding_dir),
self.divide_speaker_by_gender(self.corpus_dir), filename="spker_embed_tsne.png"
)
if self.val_prior is not None:
assert len(out) == 0
random.shuffle(train)
train = [r for r in train if r is not None]
val = [r for r in val if r is not None]
else:
assert len(train) == 0 and len(val) == 0
random.shuffle(out)
out = [r for r in out if r is not None]
train = out[self.val_size:]
val = out[: self.val_size]
if self.sort_data:
train.sort(key=lambda x: mel_frame_len_dict[x.split("|")[0]])
val.sort(key=lambda x: mel_frame_len_dict[x.split("|")[0]])
# Write metadata
with open(os.path.join(self.out_dir, "train.txt"), "w", encoding="utf-8") as f:
for m in train:
f.write(m + "\n")
with open(os.path.join(self.out_dir, "val.txt"), "w", encoding="utf-8") as f:
for m in val:
f.write(m + "\n")
return out
def process_utterance(self, tg_path, speaker, basename, save_speaker_emb):
wav_path = os.path.join(self.in_dir, speaker,
"{}.wav".format(basename))
text_path = os.path.join(self.in_dir, speaker,
"{}.lab".format(basename))
# Get alignments
textgrid = tgt.io.read_textgrid(tg_path)
phone, duration, start, end, phones_per_word = self.get_alignment(
textgrid.get_tier_by_name("phones"),
textgrid.get_tier_by_name("words"),
)
if self.sub_divide_word:
phones_per_word = word_level_subdivision(
phones_per_word, self.max_phoneme_num)
text = "{" + " ".join(phone) + "}"
if start >= end:
return None
# Read and trim wav files
wav, _ = librosa.load(wav_path, self.sampling_rate)
wav = wav.astype(np.float32)
spker_embed = self.speaker_emb(wav) if save_speaker_emb else None
wav = wav[
int(self.sampling_rate * start): int(self.sampling_rate * end)
]
# Read raw text
with open(text_path, "r") as f:
raw_text = f.readline().strip("\n")
# Compute mel-scale spectrogram
mel_spectrogram, _ = Audio.tools.get_mel_from_wav(wav, self.STFT)
mel_spectrogram = mel_spectrogram[:, : sum(duration)]
# Compute alignment prior
attn_prior = self.beta_binomial_prior_distribution(
mel_spectrogram.shape[1],
len(duration),
self.beta_binomial_scaling_factor,
)
# Save files
dur_filename = "{}-duration-{}.npy".format(speaker, basename)
np.save(os.path.join(self.out_dir, "duration", dur_filename), duration)
attn_prior_filename = "{}-attn_prior-{}.npy".format(speaker, basename)
np.save(os.path.join(self.out_dir, "attn_prior", attn_prior_filename), attn_prior)
phones_per_word_filename = "{}-phones_per_word-{}.npy".format(
speaker, basename)
np.save(os.path.join(self.out_dir, "phones_per_word",
phones_per_word_filename), phones_per_word)
mel_filename = "{}-mel-{}.npy".format(speaker, basename)
np.save(
os.path.join(self.out_dir, "mel", mel_filename),
mel_spectrogram.T,
)
return (
"|".join([basename, speaker, text, raw_text]),
mel_spectrogram.shape[1],
spker_embed,
)
def beta_binomial_prior_distribution(self, phoneme_count, mel_count, scaling_factor=1.0):
P, M = phoneme_count, mel_count
x = np.arange(0, P)
mel_text_probs = []
for i in range(1, M+1):
a, b = scaling_factor*i, scaling_factor*(M+1-i)
rv = betabinom(P, a, b)
mel_i_prob = rv.pmf(x)
mel_text_probs.append(mel_i_prob)
return np.array(mel_text_probs)
def get_alignment(self, tier_p, tier_w):
sil_phones = ["sil", "sp", "spn"]
phones_per_word = []
word_idx = 0
phone_count = 0
phones = []
durations = []
start_time = 0
end_time = 0
end_idx = 0
for t in tier_p._objects:
s, e, p = t.start_time, t.end_time, t.text
# Trim leading silences
if phones == []:
if p in sil_phones:
if p == "spn":
word_idx += 1
continue
else:
start_time = s
if p not in sil_phones:
# For ordinary phones
phones.append(p)
end_time = e
end_idx = len(phones)
phone_count += 1
if tier_w._objects[word_idx].end_time == e:
phones_per_word.append(phone_count)
phone_count = 0
word_idx += 1
else:
# For silent phones
phones.append(p)
phones_per_word.append(1)
phone_count = 0
if p == "spn":
word_idx += 1
durations.append(
int(
np.round(e * self.sampling_rate / self.hop_length)
- np.round(s * self.sampling_rate / self.hop_length)
)
)
# Trim tailing silences
trim_len = len(phones[end_idx:])
phones_per_word = phones_per_word[:-
trim_len] if trim_len else phones_per_word
phones = phones[:end_idx]
durations = durations[:end_idx]
assert len(phones) == sum(phones_per_word)
return phones, durations, start_time, end_time, phones_per_word
def get_sub_divided_phones_per_word(self, phones_per_word, max_phoneme_num):
res = []
for l in phones_per_word:
if l <= max_phoneme_num:
res.append(l)
else:
s, r = l//max_phoneme_num, l%max_phoneme_num
res += [max_phoneme_num]*s + ([r] if r else [])
return res
def remove_outlier(self, values):
values = np.array(values)
p25 = np.percentile(values, 25)
p75 = np.percentile(values, 75)
lower = p25 - 1.5 * (p75 - p25)
upper = p75 + 1.5 * (p75 - p25)
normal_indices = np.logical_and(values > lower, values < upper)
return values[normal_indices]
def divide_speaker_by_gender(self, in_dir, speaker_path="speaker-info.txt"):
speakers = dict()
with open(os.path.join(in_dir, speaker_path), encoding='utf-8') as f:
for line in tqdm(f):
if "ID" in line:
continue
parts = [p.strip()
for p in re.sub(' +', ' ', (line.strip())).split(' ')]
spk_id, gender = parts[0], parts[2]
speakers[str(spk_id)] = gender
return speakers
def load_embedding(self, embedding_dir):
embedding_path_list = [_ for _ in Path(embedding_dir).rglob('*.npy')]
embedding = None
embedding_speaker_id = list()
# Gather data
for path in tqdm(embedding_path_list):
embedding = np.concatenate((embedding, np.load(path)), axis=0) \
if embedding is not None else np.load(path)
embedding_speaker_id.append(
str(str(path).split('/')[-1].split('-')[0]))
return embedding, embedding_speaker_id