-
Notifications
You must be signed in to change notification settings - Fork 36
/
evaluate.py
91 lines (77 loc) · 2.74 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import argparse
import os
import torch
import yaml
import torch.nn as nn
from torch.utils.data import DataLoader
from utils.model import get_model, get_vocoder
from utils.tools import to_device, log, synth_one_sample
from model import PortaSpeechLoss
from dataset import Dataset
def evaluate(device, model, step, configs, logger=None, vocoder=None, len_losses=6, num_gpus=1):
preprocess_config, model_config, train_config = configs
# Get dataset
dataset = Dataset(
"val.txt", preprocess_config, model_config, train_config, sort=False, drop_last=False
)
batch_size = train_config["optimizer"]["batch_size"]
loader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=False,
collate_fn=dataset.collate_fn,
)
# Get loss function
Loss = PortaSpeechLoss(
preprocess_config, model_config, train_config).to(device)
# Evaluation
loss_sums = [0 for _ in range(len_losses)]
for batchs in loader:
for batch in batchs:
batch = to_device(batch, device)
with torch.no_grad():
# Forward
output = model(*(batch[2:]))
# Cal Loss
losses = Loss(batch, output, step)
for i in range(len(losses)):
loss_sums[i] += losses[i].item() * len(batch[0])
loss_means = [loss_sum / len(dataset) for loss_sum in loss_sums]
message = "Validation Step {}, Total Loss: {:.4f}, Mel Loss: {:.4f}, KL Loss: {:.4f}, PN Loss: {:.4f}, Duration Loss: {:.4f}, Helper Loss: {:.4f}".format(
*([step] + [l for l in loss_means])
)
if logger is not None:
fig, attn_fig, wav_reconstruction, wav_prediction, tag = synth_one_sample(
model,
batch,
output,
vocoder,
model_config,
preprocess_config,
num_gpus,
)
log(logger, step, losses=loss_means)
log(
logger,
fig=fig,
tag="Validation/step_{}_{}".format(step, tag),
)
log(
logger,
fig=attn_fig,
tag="Validation_attn/step_{}_{}".format(step, tag),
)
sampling_rate = preprocess_config["preprocessing"]["audio"]["sampling_rate"]
log(
logger,
audio=wav_reconstruction,
sampling_rate=sampling_rate,
tag="Validation/step_{}_{}_reconstructed".format(step, tag),
)
log(
logger,
audio=wav_prediction,
sampling_rate=sampling_rate,
tag="Validation/step_{}_{}_synthesized".format(step, tag),
)
return message