-
Notifications
You must be signed in to change notification settings - Fork 36
/
conv_models.py
142 lines (119 loc) · 5.26 KB
/
conv_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import logging
import os
import numpy as np
import tensorflow.keras.backend as K
from tensorflow.keras import layers
from tensorflow.keras import regularizers
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.layers import Conv2D
from tensorflow.keras.layers import Dropout
from tensorflow.keras.layers import Input
from tensorflow.keras.layers import Lambda, Dense
from tensorflow.keras.layers import Reshape
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from deepspeaker.constants import NUM_FBANKS, NUM_FRAMES
logger = logging.getLogger(__name__)
class DeepSpeakerModel:
# I thought it was 3 but maybe energy is added at a 4th dimension.
# would be better to have 4 dimensions:
# MFCC, DIFF(MFCC), DIFF(DIFF(MFCC)), ENERGIES (probably tiled across the frequency domain).
# this seems to help match the parameter counts.
def __init__(self, batch_input_shape=(None, NUM_FRAMES, NUM_FBANKS, 1), include_softmax=False,
num_speakers_softmax=None):
self.include_softmax = include_softmax
if self.include_softmax:
assert num_speakers_softmax > 0
self.clipped_relu_count = 0
# http://cs231n.github.io/convolutional-networks/
# conv weights
# #params = ks * ks * nb_filters * num_channels_input
# Conv128-s
# 5*5*128*128/2+128
# ks*ks*nb_filters*channels/strides+bias(=nb_filters)
# take 100 ms -> 4 frames.
# if signal is 3 seconds, then take 100ms per 100ms and average out this network.
# 8*8 = 64 features.
# used to share all the layers across the inputs
# num_frames = K.shape() - do it dynamically after.
inputs = Input(batch_shape=batch_input_shape, name='input')
x = self.cnn_component(inputs)
x = Reshape((-1, 2048))(x)
# Temporal average layer. axis=1 is time.
x = Lambda(lambda y: K.mean(y, axis=1), name='average')(x)
if include_softmax:
logger.info('Including a Dropout layer to reduce overfitting.')
# used for softmax because the dataset we pre-train on might be too small. easy to overfit.
x = Dropout(0.5)(x)
x = Dense(512, name='affine')(x)
if include_softmax:
# Those weights are just when we train on softmax.
x = Dense(num_speakers_softmax, activation='softmax')(x)
else:
# Does not contain any weights.
x = Lambda(lambda y: K.l2_normalize(y, axis=1), name='ln')(x)
self.m = Model(inputs, x, name='ResCNN')
def keras_model(self):
return self.m
def get_weights(self):
w = self.m.get_weights()
if self.include_softmax:
w.pop() # last 2 are the W_softmax and b_softmax.
w.pop()
return w
def clipped_relu(self, inputs):
relu = Lambda(lambda y: K.minimum(K.maximum(y, 0), 20),
name=f'clipped_relu_{self.clipped_relu_count}')(inputs)
self.clipped_relu_count += 1
return relu
def identity_block(self, input_tensor, kernel_size, filters, stage, block):
conv_name_base = f'res{stage}_{block}_branch'
x = Conv2D(filters,
kernel_size=kernel_size,
strides=1,
activation=None,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001),
name=conv_name_base + '_2a')(input_tensor)
x = BatchNormalization(name=conv_name_base + '_2a_bn')(x)
x = self.clipped_relu(x)
x = Conv2D(filters,
kernel_size=kernel_size,
strides=1,
activation=None,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001),
name=conv_name_base + '_2b')(x)
x = BatchNormalization(name=conv_name_base + '_2b_bn')(x)
x = self.clipped_relu(x)
x = layers.add([x, input_tensor])
x = self.clipped_relu(x)
return x
def conv_and_res_block(self, inp, filters, stage):
conv_name = 'conv{}-s'.format(filters)
# TODO: why kernel_regularizer?
o = Conv2D(filters,
kernel_size=5,
strides=2,
activation=None,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001), name=conv_name)(inp)
o = BatchNormalization(name=conv_name + '_bn')(o)
o = self.clipped_relu(o)
for i in range(3):
o = self.identity_block(
o, kernel_size=3, filters=filters, stage=stage, block=i)
return o
def cnn_component(self, inp):
x = self.conv_and_res_block(inp, 64, stage=1)
x = self.conv_and_res_block(x, 128, stage=2)
x = self.conv_and_res_block(x, 256, stage=3)
x = self.conv_and_res_block(x, 512, stage=4)
return x
def set_weights(self, w):
for layer, layer_w in zip(self.m.layers, w):
layer.set_weights(layer_w)
logger.info(f'Setting weights for [{layer.name}]...')