-
Notifications
You must be signed in to change notification settings - Fork 36
/
train.py
251 lines (216 loc) · 9.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import argparse
import os
import torch
import yaml
import torch.nn as nn
import torch.multiprocessing as mp
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DistributedSampler, DataLoader
from torch.distributed import init_process_group
from torch.nn.parallel import DistributedDataParallel
from torch.cuda import amp
from tqdm import tqdm
from utils.model import get_model, get_vocoder, get_param_num
from utils.tools import get_configs_of, to_device, log, synth_one_sample
from model import PortaSpeechLoss
from dataset import Dataset
from evaluate import evaluate
torch.backends.cudnn.benchmark = True
def train(rank, args, configs, batch_size, num_gpus):
preprocess_config, model_config, train_config = configs
if num_gpus > 1:
init_process_group(
backend=train_config["dist_config"]['dist_backend'],
init_method=train_config["dist_config"]['dist_url'],
world_size=train_config["dist_config"]['world_size'] * num_gpus,
rank=rank,
)
device = torch.device('cuda:{:d}'.format(rank))
# Get dataset
dataset = Dataset(
"train.txt", preprocess_config, model_config, train_config, sort=True, drop_last=True
)
data_sampler = DistributedSampler(dataset) if num_gpus > 1 else None
group_size = 4 # Set this larger than 1 to enable sorting in Dataset
assert batch_size * group_size < len(dataset)
loader = DataLoader(
dataset,
batch_size=batch_size * group_size,
shuffle=False,
sampler=data_sampler,
collate_fn=dataset.collate_fn,
)
# Prepare model
model, optimizer = get_model(args, configs, device, train=True)
if num_gpus > 1:
model = DistributedDataParallel(model, device_ids=[rank]).to(device)
scaler = amp.GradScaler(enabled=args.use_amp)
Loss = PortaSpeechLoss(
preprocess_config, model_config, train_config).to(device)
# Load vocoder
vocoder = get_vocoder(model_config, device)
# Training
step = args.restore_step + 1
epoch = 1
grad_acc_step = train_config["optimizer"]["grad_acc_step"]
grad_clip_thresh = train_config["optimizer"]["grad_clip_thresh"]
total_step = train_config["step"]["total_step"]
log_step = train_config["step"]["log_step"]
save_step = train_config["step"]["save_step"]
synth_step = train_config["step"]["synth_step"]
val_step = train_config["step"]["val_step"]
if rank == 0:
print("Number of PortaSpeech Parameters: {}\n".format(get_param_num(model)))
# Init logger
for p in train_config["path"].values():
os.makedirs(p, exist_ok=True)
train_log_path = os.path.join(
train_config["path"]["log_path"], "train")
val_log_path = os.path.join(train_config["path"]["log_path"], "val")
os.makedirs(train_log_path, exist_ok=True)
os.makedirs(val_log_path, exist_ok=True)
train_logger = SummaryWriter(train_log_path)
val_logger = SummaryWriter(val_log_path)
outer_bar = tqdm(total=total_step, desc="Training", position=0)
outer_bar.n = args.restore_step
outer_bar.update()
train = True
while train:
if rank == 0:
inner_bar = tqdm(total=len(loader),
desc="Epoch {}".format(epoch), position=1)
if num_gpus > 1:
data_sampler.set_epoch(epoch)
for batchs in loader:
if train == False:
break
for batch in batchs:
batch = to_device(batch, device)
with amp.autocast(args.use_amp):
# Forward
output = model(*(batch[2:]))
# Cal Loss
losses = Loss(batch, output)
total_loss = losses[0]
total_loss = total_loss / grad_acc_step
# Backward
scaler.scale(total_loss).backward()
# Clipping gradients to avoid gradient explosion
if step % grad_acc_step == 0:
scaler.unscale_(optimizer._optimizer)
torch.nn.utils.clip_grad_norm_(
model.parameters(), grad_clip_thresh)
# Update weights
optimizer.step_and_update_lr(scaler)
scaler.update()
optimizer.zero_grad()
if rank == 0:
if step % log_step == 0:
losses = [l.item() for l in losses]
message1 = "Step {}/{}, ".format(step, total_step)
message2 = "Total Loss: {:.4f}, Mel Loss: {:.4f}, KL Loss: {:.4f}, PN Loss: {:.4f}, Duration Loss: {:.4f}".format(
*losses
)
with open(os.path.join(train_log_path, "log.txt"), "a") as f:
f.write(message1 + message2 + "\n")
outer_bar.write(message1 + message2)
log(train_logger, step, losses=losses)
if step % synth_step == 0:
fig, attn_fig, wav_reconstruction, wav_prediction, tag = synth_one_sample(
model,
batch,
output,
vocoder,
model_config,
preprocess_config,
num_gpus,
)
log(
train_logger,
fig=fig,
tag="Training/step_{}_{}".format(step, tag),
)
log(
train_logger,
fig=attn_fig,
tag="Training_attn/step_{}_{}".format(step, tag),
)
sampling_rate = preprocess_config["preprocessing"]["audio"][
"sampling_rate"
]
log(
train_logger,
audio=wav_reconstruction,
sampling_rate=sampling_rate,
tag="Training/step_{}_{}_reconstructed".format(
step, tag),
)
log(
train_logger,
audio=wav_prediction,
sampling_rate=sampling_rate,
tag="Training/step_{}_{}_synthesized".format(
step, tag),
)
if step % val_step == 0:
model.eval()
message = evaluate(
device, model, step, configs, val_logger, vocoder, len(losses), num_gpus)
with open(os.path.join(val_log_path, "log.txt"), "a") as f:
f.write(message + "\n")
outer_bar.write(message)
model.train()
if step % save_step == 0:
torch.save(
{
"model": model.module.state_dict() if num_gpus > 1 else model.state_dict(),
"optimizer": optimizer._optimizer.state_dict(),
},
os.path.join(
train_config["path"]["ckpt_path"],
"{}.pth.tar".format(step),
),
)
if step == total_step:
train = False
break
step += 1
if rank == 0:
outer_bar.update(1)
if rank == 0:
inner_bar.update(1)
epoch += 1
if __name__ == "__main__":
assert torch.cuda.is_available(), "CPU training is not allowed."
parser = argparse.ArgumentParser()
parser.add_argument('--use_amp', action='store_true')
parser.add_argument("--restore_step", type=int, default=0)
parser.add_argument(
"--dataset",
type=str,
required=True,
help="name of dataset",
)
args = parser.parse_args()
# Read Config
preprocess_config, model_config, train_config = get_configs_of(
args.dataset)
configs = (preprocess_config, model_config, train_config)
# Set Device
torch.manual_seed(train_config["seed"])
torch.cuda.manual_seed(train_config["seed"])
num_gpus = torch.cuda.device_count()
batch_size = int(train_config["optimizer"]["batch_size"] / num_gpus)
# Log Configuration
print("\n==================================== Training Configuration ====================================")
print(' ---> Automatic Mixed Precision:', args.use_amp)
print(' ---> Number of used GPU:', num_gpus)
print(' ---> Batch size per GPU:', batch_size)
print(' ---> Batch size in total:', batch_size * num_gpus)
print("=================================================================================================")
print("Prepare training ...")
if num_gpus > 1:
mp.spawn(train, nprocs=num_gpus, args=(
args, configs, batch_size, num_gpus))
else:
train(0, args, configs, batch_size, num_gpus)