-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathtrain.py
227 lines (194 loc) · 8.86 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import argparse
import os
import torch
import yaml
import numpy as np
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from utils.model import get_model, get_vocoder, get_param_num
from utils.tools import get_configs_of, to_device, log, synth_one_sample
from model import DiffSingerLoss
from dataset import Dataset
from evaluate import evaluate
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def main(args, configs):
print("Prepare training ...")
preprocess_config, model_config, train_config = configs
# Get dataset
dataset = Dataset(
"train.txt", preprocess_config, train_config, sort=True, drop_last=True
)
batch_size = train_config["optimizer"]["batch_size"]
group_size = 4 # Set this larger than 1 to enable sorting in Dataset
assert batch_size * group_size < len(dataset)
loader = DataLoader(
dataset,
batch_size=batch_size * group_size,
shuffle=True,
collate_fn=dataset.collate_fn,
)
# Prepare model
model, optimizer = get_model(args, configs, device, train=True)
model = nn.DataParallel(model)
num_param = get_param_num(model)
Loss = DiffSingerLoss(args, preprocess_config, model_config, train_config).to(device)
print("Number of DiffSinger Parameters:", num_param)
# Load vocoder
vocoder = get_vocoder(model_config, device)
# Init logger
for p in train_config["path"].values():
os.makedirs(p, exist_ok=True)
train_log_path = os.path.join(train_config["path"]["log_path"], "train")
val_log_path = os.path.join(train_config["path"]["log_path"], "val")
os.makedirs(train_log_path, exist_ok=True)
os.makedirs(val_log_path, exist_ok=True)
train_logger = SummaryWriter(train_log_path)
val_logger = SummaryWriter(val_log_path)
# Training
step = args.restore_step + 1
epoch = 1
grad_acc_step = train_config["optimizer"]["grad_acc_step"]
grad_clip_thresh = train_config["optimizer"]["grad_clip_thresh"]
total_step = train_config["step"]["total_step_{}".format(args.model)]
log_step = train_config["step"]["log_step"]
save_step = train_config["step"]["save_step"]
synth_step = train_config["step"]["synth_step"]
val_step = train_config["step"]["val_step"]
outer_bar = tqdm(total=total_step, desc="Training", position=0)
outer_bar.n = args.restore_step
outer_bar.update()
while True:
inner_bar = tqdm(total=len(loader), desc="Epoch {}".format(epoch), position=1)
for batchs in loader:
for batch in batchs:
batch = to_device(batch, device)
# Forward
output, p_targets = model(*(batch[2:]))
# Update Batch
batch[9] = p_targets
# Cal Loss
losses = Loss(batch, output)
total_loss = losses[0]
# Backward
total_loss = total_loss / grad_acc_step
total_loss.backward()
if step % grad_acc_step == 0:
# Clipping gradients to avoid gradient explosion
nn.utils.clip_grad_norm_(model.parameters(), grad_clip_thresh)
# Update weights
lr = optimizer.step_and_update_lr()
optimizer.zero_grad()
if step % log_step == 0:
losses_ = [sum(l.values()).item() if isinstance(l, dict) else l.item() for l in losses]
message1 = "Step {}/{}, ".format(step, total_step)
message2 = "Total Loss: {:.4f}, Mel Loss: {:.4f}, Noise Loss: {:.4f}, Pitch Loss: {:.4f}, Energy Loss: {:.4f}, Duration Loss: {:.4f}".format(
*losses_
)
with open(os.path.join(train_log_path, "log.txt"), "a") as f:
f.write(message1 + message2 + "\n")
outer_bar.write(message1 + message2)
log(train_logger, step, losses=losses, lr=lr)
if step % synth_step == 0:
figs, wav_reconstruction, wav_prediction, tag = synth_one_sample(
args,
batch,
output,
vocoder,
model_config,
preprocess_config,
model.module.diffusion,
)
log(
train_logger,
step,
figs=figs,
tag="Training",
)
sampling_rate = preprocess_config["preprocessing"]["audio"][
"sampling_rate"
]
log(
train_logger,
audio=wav_reconstruction,
sampling_rate=sampling_rate,
tag="Training/step_{}_{}_reconstructed".format(step, tag),
)
log(
train_logger,
audio=wav_prediction,
sampling_rate=sampling_rate,
tag="Training/step_{}_{}_synthesized".format(step, tag),
)
if step % val_step == 0:
model.eval()
message = evaluate(args, model, step, configs, val_logger, vocoder, losses)
with open(os.path.join(val_log_path, "log.txt"), "a") as f:
f.write(message + "\n")
outer_bar.write(message)
model.train()
if step % save_step == 0:
torch.save(
{
"model": model.module.state_dict(),
"optimizer": optimizer._optimizer.state_dict(),
},
os.path.join(
train_config["path"]["ckpt_path"],
"{}.pth.tar".format(step),
),
)
if step >= total_step:
quit()
step += 1
outer_bar.update(1)
inner_bar.update(1)
epoch += 1
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--restore_step", type=int, default=0)
parser.add_argument("--path_tag", type=str, default="")
parser.add_argument(
"--model",
type=str,
choices=["naive", "aux", "shallow"],
required=True,
help="training model type",
)
parser.add_argument(
"--dataset",
type=str,
required=True,
help="name of dataset",
)
args = parser.parse_args()
# Read Config
preprocess_config, model_config, train_config = get_configs_of(args.dataset)
configs = (preprocess_config, model_config, train_config)
if args.model == "shallow":
assert args.restore_step >= train_config["step"]["total_step_aux"]
if args.model in ["aux", "shallow"]:
train_tag = "shallow"
elif args.model == "naive":
train_tag = "naive"
else:
raise NotImplementedError
path_tag = "_{}".format(args.path_tag) if args.path_tag != "" else args.path_tag
train_config["path"]["ckpt_path"] = train_config["path"]["ckpt_path"]+"_{}{}".format(train_tag, path_tag)
train_config["path"]["log_path"] = train_config["path"]["log_path"]+"_{}{}".format(train_tag, path_tag)
train_config["path"]["result_path"] = train_config["path"]["result_path"]+"_{}{}".format(args.model, path_tag)
if preprocess_config["preprocessing"]["pitch"]["pitch_type"] == "cwt":
from utils.pitch_tools import get_lf0_cwt
preprocess_config["preprocessing"]["pitch"]["cwt_scales"] = get_lf0_cwt(np.ones(10))[1]
# Log Configuration
print("\n==================================== Training Configuration ====================================")
print(" ---> Type of Modeling:", args.model)
print(" ---> Total Batch Size:", int(train_config["optimizer"]["batch_size"]))
print(" ---> Use Pitch Embed:", model_config["variance_embedding"]["use_pitch_embed"])
print(" ---> Use Energy Embed:", model_config["variance_embedding"]["use_energy_embed"])
print(" ---> Path of ckpt:", train_config["path"]["ckpt_path"])
print(" ---> Path of log:", train_config["path"]["log_path"])
print(" ---> Path of result:", train_config["path"]["result_path"])
print("================================================================================================")
main(args, configs)