-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate.py
120 lines (98 loc) · 3.62 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import argparse
import os
import torch
import yaml
import torch.nn as nn
from torch.utils.data import DataLoader
from utils.model import get_model, get_vocoder
from utils.tools import to_device, log, synth_one_sample
from model import MYMODELLoss
from dataset import Dataset
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def evaluate(model, step, configs, logger=None, vocoder=None):
preprocess_config, model_config, train_config = configs
# Get dataset
dataset = Dataset(
"val.txt", preprocess_config, train_config, sort=False, drop_last=False
)
batch_size = train_config["optimizer"]["batch_size"]
loader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=False,
collate_fn=dataset.collate_fn,
)
# Get loss function
Loss = MYMODELLoss(preprocess_config, model_config).to(device)
# Evaluation
loss_sums = [0 for _ in range(6)]
for batchs in loader:
for batch in batchs:
batch = to_device(batch, device)
with torch.no_grad():
# Forward
output = model(*(batch[2:]))
# Cal Loss
losses = Loss(batch, output)
for i in range(len(losses)):
loss_sums[i] += losses[i].item() * len(batch[0])
loss_means = [loss_sum / len(dataset) for loss_sum in loss_sums]
message = "Validation Step {}, Total Loss: {:.4f}, Mel Loss: {:.4f}, Mel PostNet Loss: {:.4f}, Pitch Loss: {:.4f}, Energy Loss: {:.4f}, Duration Loss: {:.4f}".format(
*([step] + [l for l in loss_means])
)
if logger is not None:
fig, wav_reconstruction, wav_prediction, tag = synth_one_sample(
batch,
output,
vocoder,
model_config,
preprocess_config,
)
log(logger, step, losses=loss_means)
log(
logger,
fig=fig,
tag="Validation/step_{}_{}".format(step, tag),
)
sampling_rate = preprocess_config["preprocessing"]["audio"]["sampling_rate"]
log(
logger,
audio=wav_reconstruction,
sampling_rate=sampling_rate,
tag="Validation/step_{}_{}_reconstructed".format(step, tag),
)
log(
logger,
audio=wav_prediction,
sampling_rate=sampling_rate,
tag="Validation/step_{}_{}_synthesized".format(step, tag),
)
return message
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--restore_step", type=int, default=30000)
parser.add_argument(
"-p",
"--preprocess_config",
type=str,
required=True,
help="path to preprocess.yaml",
)
parser.add_argument(
"-m", "--model_config", type=str, required=True, help="path to model.yaml"
)
parser.add_argument(
"-t", "--train_config", type=str, required=True, help="path to train.yaml"
)
args = parser.parse_args()
# Read Config
preprocess_config = yaml.load(
open(args.preprocess_config, "r"), Loader=yaml.FullLoader
)
model_config = yaml.load(open(args.model_config, "r"), Loader=yaml.FullLoader)
train_config = yaml.load(open(args.train_config, "r"), Loader=yaml.FullLoader)
configs = (preprocess_config, model_config, train_config)
# Get model
model = get_model(args, configs, device, train=False).to(device)
message = evaluate(model, args.restore_step, configs)
print(message)