-
Notifications
You must be signed in to change notification settings - Fork 41
/
batcher.py
433 lines (352 loc) · 19.8 KB
/
batcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import json
import logging
import os
from collections import deque, Counter
from random import choice
from time import time
import numpy as np
from tqdm import tqdm
from deepspeaker.audio_ds import pad_mfcc, Audio
from deepspeaker.constants import NUM_FRAMES, NUM_FBANKS
from deepspeaker.conv_models import DeepSpeakerModel
from deepspeaker.utils import train_test_sp_to_utt
logger = logging.getLogger(__name__)
def extract_speaker(utt_file):
return utt_file.split('/')[-1].split('_')[0]
def sample_from_mfcc(mfcc, max_length):
if mfcc.shape[0] >= max_length:
r = choice(range(0, len(mfcc) - max_length + 1))
s = mfcc[r:r + max_length]
else:
s = pad_mfcc(mfcc, max_length)
return np.expand_dims(s, axis=-1)
def sample_from_mfcc_file(utterance_file, max_length):
mfcc = np.load(utterance_file)
return sample_from_mfcc(mfcc, max_length)
class SparseCategoricalSpeakers:
def __init__(self, speakers_list):
self.speaker_ids = sorted(speakers_list)
assert len(set(self.speaker_ids)) == len(self.speaker_ids) # all unique.
self.map = dict(zip(self.speaker_ids, range(len(self.speaker_ids))))
def get_index(self, speaker_id):
return self.map[speaker_id]
class OneHotSpeakers:
def __init__(self, speakers_list):
from tensorflow.keras.utils import to_categorical
self.speaker_ids = sorted(speakers_list)
self.int_speaker_ids = list(range(len(self.speaker_ids)))
self.map_speakers_to_index = dict([(k, v) for (k, v) in zip(self.speaker_ids, self.int_speaker_ids)])
self.map_index_to_speakers = dict([(v, k) for (k, v) in zip(self.speaker_ids, self.int_speaker_ids)])
self.speaker_categories = to_categorical(self.int_speaker_ids, num_classes=len(self.speaker_ids))
def get_speaker_from_index(self, index):
return self.map_index_to_speakers[index]
def get_one_hot(self, speaker_id):
index = self.map_speakers_to_index[speaker_id]
return self.speaker_categories[index]
class LazyTripletBatcher:
def __init__(self, working_dir: str, max_length: int, model: DeepSpeakerModel):
self.working_dir = working_dir
self.audio = Audio(cache_dir=working_dir)
logger.info(f'Picking audio from {working_dir}.')
self.sp_to_utt_train = train_test_sp_to_utt(self.audio, is_test=False)
self.sp_to_utt_test = train_test_sp_to_utt(self.audio, is_test=True)
self.max_length = max_length
self.model = model
self.nb_per_speaker = 2
self.nb_speakers = 640
self.history_length = 4
self.history_every = 100 # batches.
self.total_history_length = self.nb_speakers * self.nb_per_speaker * self.history_length # 25,600
self.metadata_train_speakers = Counter()
self.metadata_output_file = os.path.join(self.working_dir, 'debug_batcher.json')
self.history_embeddings_train = deque(maxlen=self.total_history_length)
self.history_utterances_train = deque(maxlen=self.total_history_length)
self.history_model_inputs_train = deque(maxlen=self.total_history_length)
self.history_embeddings = None
self.history_utterances = None
self.history_model_inputs = None
self.batch_count = 0
for _ in tqdm(range(self.history_length), desc='Initializing the batcher'): # init history.
self.update_triplets_history()
def update_triplets_history(self):
model_inputs = []
speakers = list(self.audio.speakers_to_utterances.keys())
np.random.shuffle(speakers)
selected_speakers = speakers[: self.nb_speakers]
embeddings_utterances = []
for speaker_id in selected_speakers:
train_utterances = self.sp_to_utt_train[speaker_id]
for selected_utterance in np.random.choice(a=train_utterances, size=self.nb_per_speaker, replace=False):
mfcc = sample_from_mfcc_file(selected_utterance, self.max_length)
embeddings_utterances.append(selected_utterance)
model_inputs.append(mfcc)
embeddings = self.model.m.predict(np.array(model_inputs))
assert embeddings.shape[-1] == 512
embeddings = np.reshape(embeddings, (len(selected_speakers), self.nb_per_speaker, 512))
self.history_embeddings_train.extend(list(embeddings.reshape((-1, 512))))
self.history_utterances_train.extend(embeddings_utterances)
self.history_model_inputs_train.extend(model_inputs)
# reason: can't index a deque with a np.array.
self.history_embeddings = np.array(self.history_embeddings_train)
self.history_utterances = np.array(self.history_utterances_train)
self.history_model_inputs = np.array(self.history_model_inputs_train)
with open(self.metadata_output_file, 'w') as w:
json.dump(obj=dict(self.metadata_train_speakers), fp=w, indent=2)
def get_batch(self, batch_size, is_test=False):
return self.get_batch_test(batch_size) if is_test else self.get_random_batch(batch_size, is_test=False)
def get_batch_test(self, batch_size):
return self.get_random_batch(batch_size, is_test=True)
def get_random_batch(self, batch_size, is_test=False):
sp_to_utt = self.sp_to_utt_test if is_test else self.sp_to_utt_train
speakers = list(self.audio.speakers_to_utterances.keys())
anchor_speakers = np.random.choice(speakers, size=batch_size // 3, replace=False)
anchor_utterances = []
positive_utterances = []
negative_utterances = []
for anchor_speaker in anchor_speakers:
negative_speaker = np.random.choice(list(set(speakers) - {anchor_speaker}), size=1)[0]
assert negative_speaker != anchor_speaker
pos_utterances = np.random.choice(sp_to_utt[anchor_speaker], 2, replace=False)
neg_utterance = np.random.choice(sp_to_utt[negative_speaker], 1, replace=True)[0]
anchor_utterances.append(pos_utterances[0])
positive_utterances.append(pos_utterances[1])
negative_utterances.append(neg_utterance)
# anchor and positive should have difference utterances (but same speaker!).
anc_pos = np.array([positive_utterances, anchor_utterances])
assert np.all(anc_pos[0, :] != anc_pos[1, :])
assert np.all(np.array([extract_speaker(s) for s in anc_pos[0, :]]) == np.array(
[extract_speaker(s) for s in anc_pos[1, :]]))
pos_neg = np.array([positive_utterances, negative_utterances])
assert np.all(pos_neg[0, :] != pos_neg[1, :])
assert np.all(np.array([extract_speaker(s) for s in pos_neg[0, :]]) != np.array(
[extract_speaker(s) for s in pos_neg[1, :]]))
batch_x = np.vstack([
[sample_from_mfcc_file(u, self.max_length) for u in anchor_utterances],
[sample_from_mfcc_file(u, self.max_length) for u in positive_utterances],
[sample_from_mfcc_file(u, self.max_length) for u in negative_utterances]
])
batch_y = np.zeros(shape=(len(batch_x), 1)) # dummy. sparse softmax needs something.
return batch_x, batch_y
def get_batch_train(self, batch_size):
from test import batch_cosine_similarity
# s1 = time()
self.batch_count += 1
if self.batch_count % self.history_every == 0:
self.update_triplets_history()
all_indexes = range(len(self.history_embeddings_train))
anchor_indexes = np.random.choice(a=all_indexes, size=batch_size // 3, replace=False)
# s2 = time()
similar_negative_indexes = []
dissimilar_positive_indexes = []
# could be made parallel.
for anchor_index in anchor_indexes:
# s21 = time()
anchor_embedding = self.history_embeddings[anchor_index]
anchor_speaker = extract_speaker(self.history_utterances[anchor_index])
# why self.nb_speakers // 2? just random. because it is fast. otherwise it's too much.
negative_indexes = [j for (j, a) in enumerate(self.history_utterances)
if extract_speaker(a) != anchor_speaker]
negative_indexes = np.random.choice(negative_indexes, size=self.nb_speakers // 2)
# s22 = time()
anchor_embedding_tile = [anchor_embedding] * len(negative_indexes)
anchor_cos = batch_cosine_similarity(anchor_embedding_tile, self.history_embeddings[negative_indexes])
# s23 = time()
similar_negative_index = negative_indexes[np.argsort(anchor_cos)[-1]] # [-1:]
similar_negative_indexes.append(similar_negative_index)
# s24 = time()
positive_indexes = [j for (j, a) in enumerate(self.history_utterances) if
extract_speaker(a) == anchor_speaker and j != anchor_index]
# s25 = time()
anchor_embedding_tile = [anchor_embedding] * len(positive_indexes)
# s26 = time()
anchor_cos = batch_cosine_similarity(anchor_embedding_tile, self.history_embeddings[positive_indexes])
dissimilar_positive_index = positive_indexes[np.argsort(anchor_cos)[0]] # [:1]
dissimilar_positive_indexes.append(dissimilar_positive_index)
# s27 = time()
# s3 = time()
batch_x = np.vstack([
self.history_model_inputs[anchor_indexes],
self.history_model_inputs[dissimilar_positive_indexes],
self.history_model_inputs[similar_negative_indexes]
])
# s4 = time()
# for anchor, positive, negative in zip(history_utterances[anchor_indexes],
# history_utterances[dissimilar_positive_indexes],
# history_utterances[similar_negative_indexes]):
# print('anchor', os.path.basename(anchor),
# 'positive', os.path.basename(positive),
# 'negative', os.path.basename(negative))
# print('_' * 80)
# assert utterances as well positive != anchor.
anchor_speakers = [extract_speaker(a) for a in self.history_utterances[anchor_indexes]]
positive_speakers = [extract_speaker(a) for a in self.history_utterances[dissimilar_positive_indexes]]
negative_speakers = [extract_speaker(a) for a in self.history_utterances[similar_negative_indexes]]
assert len(anchor_indexes) == len(dissimilar_positive_indexes)
assert len(similar_negative_indexes) == len(dissimilar_positive_indexes)
assert list(self.history_utterances[dissimilar_positive_indexes]) != list(
self.history_utterances[anchor_indexes])
assert anchor_speakers == positive_speakers
assert negative_speakers != anchor_speakers
batch_y = np.zeros(shape=(len(batch_x), 1)) # dummy. sparse softmax needs something.
for a in anchor_speakers:
self.metadata_train_speakers[a] += 1
for a in positive_speakers:
self.metadata_train_speakers[a] += 1
for a in negative_speakers:
self.metadata_train_speakers[a] += 1
# s5 = time()
# print('1-2', s2 - s1)
# print('2-3', s3 - s2)
# print('3-4', s4 - s3)
# print('4-5', s5 - s4)
# print('21-22', (s22 - s21) * (batch_size // 3))
# print('22-23', (s23 - s22) * (batch_size // 3))
# print('23-24', (s24 - s23) * (batch_size // 3))
# print('24-25', (s25 - s24) * (batch_size // 3))
# print('25-26', (s26 - s25) * (batch_size // 3))
# print('26-27', (s27 - s26) * (batch_size // 3))
return batch_x, batch_y
def get_speaker_verification_data(self, anchor_speaker, num_different_speakers):
speakers = list(self.audio.speakers_to_utterances.keys())
anchor_utterances = []
positive_utterances = []
negative_utterances = []
negative_speakers = np.random.choice(list(set(speakers) - {anchor_speaker}), size=num_different_speakers)
assert [negative_speaker != anchor_speaker for negative_speaker in negative_speakers]
pos_utterances = np.random.choice(self.sp_to_utt_test[anchor_speaker], 2, replace=False)
neg_utterances = [np.random.choice(self.sp_to_utt_test[neg], 1, replace=True)[0] for neg in negative_speakers]
anchor_utterances.append(pos_utterances[0])
positive_utterances.append(pos_utterances[1])
negative_utterances.extend(neg_utterances)
# anchor and positive should have difference utterances (but same speaker!).
anc_pos = np.array([positive_utterances, anchor_utterances])
assert np.all(anc_pos[0, :] != anc_pos[1, :])
assert np.all(np.array([extract_speaker(s) for s in anc_pos[0, :]]) == np.array(
[extract_speaker(s) for s in anc_pos[1, :]]))
batch_x = np.vstack([
[sample_from_mfcc_file(u, self.max_length) for u in anchor_utterances],
[sample_from_mfcc_file(u, self.max_length) for u in positive_utterances],
[sample_from_mfcc_file(u, self.max_length) for u in negative_utterances]
])
batch_y = np.zeros(shape=(len(batch_x), 1)) # dummy. sparse softmax needs something.
return batch_x, batch_y
class TripletBatcher:
def __init__(self, kx_train, ky_train, kx_test, ky_test):
self.kx_train = kx_train
self.ky_train = ky_train
self.kx_test = kx_test
self.ky_test = ky_test
speakers_list = sorted(set(ky_train.argmax(axis=1)))
num_different_speakers = len(speakers_list)
assert speakers_list == sorted(set(ky_test.argmax(axis=1))) # train speakers = test speakers.
assert speakers_list == list(range(num_different_speakers))
self.train_indices_per_speaker = {}
self.test_indices_per_speaker = {}
for speaker_id in speakers_list:
self.train_indices_per_speaker[speaker_id] = list(np.where(ky_train.argmax(axis=1) == speaker_id)[0])
self.test_indices_per_speaker[speaker_id] = list(np.where(ky_test.argmax(axis=1) == speaker_id)[0])
# check.
# print(sorted(sum([v for v in self.train_indices_per_speaker.values()], [])))
# print(range(len(ky_train)))
assert sorted(sum([v for v in self.train_indices_per_speaker.values()], [])) == sorted(range(len(ky_train)))
assert sorted(sum([v for v in self.test_indices_per_speaker.values()], [])) == sorted(range(len(ky_test)))
self.speakers_list = speakers_list
def select_speaker_data(self, speaker, n, is_test):
x = self.kx_test if is_test else self.kx_train
indices_per_speaker = self.test_indices_per_speaker if is_test else self.train_indices_per_speaker
indices = np.random.choice(indices_per_speaker[speaker], size=n)
return x[indices]
def get_batch(self, batch_size, is_test=False):
# y = self.ky_test if is_test else self.ky_train
two_different_speakers = np.random.choice(self.speakers_list, size=2, replace=False)
anchor_positive_speaker = two_different_speakers[0]
negative_speaker = two_different_speakers[1]
assert negative_speaker != anchor_positive_speaker
batch_x = np.vstack([
self.select_speaker_data(anchor_positive_speaker, batch_size // 3, is_test),
self.select_speaker_data(anchor_positive_speaker, batch_size // 3, is_test),
self.select_speaker_data(negative_speaker, batch_size // 3, is_test)
])
batch_y = np.zeros(shape=(len(batch_x), len(self.speakers_list)))
return batch_x, batch_y
class TripletBatcherMiner(TripletBatcher):
def __init__(self, kx_train, ky_train, kx_test, ky_test, model: DeepSpeakerModel):
super().__init__(kx_train, ky_train, kx_test, ky_test)
self.model = model
self.num_evaluations_to_find_best_batch = 10
def get_batch(self, batch_size, is_test=False):
if is_test:
return super().get_batch(batch_size, is_test)
max_loss = 0
max_batch = None, None
for i in range(self.num_evaluations_to_find_best_batch):
bx, by = super().get_batch(batch_size, is_test=False) # only train here.
loss = self.model.m.evaluate(bx, by, batch_size=batch_size, verbose=0)
if loss > max_loss:
max_loss = loss
max_batch = bx, by
return max_batch
class TripletBatcherSelectHardNegatives(TripletBatcher):
def __init__(self, kx_train, ky_train, kx_test, ky_test, model: DeepSpeakerModel):
super().__init__(kx_train, ky_train, kx_test, ky_test)
self.model = model
def get_batch(self, batch_size, is_test=False, predict=None):
if predict is None:
predict = self.model.m.predict
from test import batch_cosine_similarity
num_triplets = batch_size // 3
inputs = []
k = 2 # do not change this.
for speaker in self.speakers_list:
inputs.append(self.select_speaker_data(speaker, n=k, is_test=is_test))
inputs = np.array(inputs) # num_speakers * [k, num_frames, num_fbanks, 1].
embeddings = predict(np.vstack(inputs))
assert embeddings.shape[-1] == 512
# (speaker, utterance, 512)
embeddings = np.reshape(embeddings, (len(self.speakers_list), k, 512))
cs = batch_cosine_similarity(embeddings[:, 0], embeddings[:, 1])
arg_sort = np.argsort(cs)
assert len(arg_sort) > num_triplets
anchor_speakers = arg_sort[0:num_triplets]
anchor_embeddings = embeddings[anchor_speakers, 0]
negative_speakers = sorted(set(self.speakers_list) - set(anchor_speakers))
negative_embeddings = embeddings[negative_speakers, 0]
selected_negative_speakers = []
for anchor_embedding in anchor_embeddings:
cs_negative = [batch_cosine_similarity([anchor_embedding], neg) for neg in negative_embeddings]
selected_negative_speakers.append(negative_speakers[int(np.argmax(cs_negative))])
# anchor with frame 0.
# positive with frame 1.
# negative with frame 0.
assert len(set(selected_negative_speakers).intersection(anchor_speakers)) == 0
negative = inputs[selected_negative_speakers, 0]
positive = inputs[anchor_speakers, 1]
anchor = inputs[anchor_speakers, 0]
batch_x = np.vstack([anchor, positive, negative])
batch_y = np.zeros(shape=(len(batch_x), len(self.speakers_list)))
return batch_x, batch_y
class TripletEvaluator:
def __init__(self, kx_test, ky_test):
self.kx_test = kx_test
self.ky_test = ky_test
speakers_list = sorted(set(ky_test.argmax(axis=1)))
num_different_speakers = len(speakers_list)
assert speakers_list == list(range(num_different_speakers))
self.test_indices_per_speaker = {}
for speaker_id in speakers_list:
self.test_indices_per_speaker[speaker_id] = list(np.where(ky_test.argmax(axis=1) == speaker_id)[0])
assert sorted(sum([v for v in self.test_indices_per_speaker.values()], [])) == sorted(range(len(ky_test)))
self.speakers_list = speakers_list
def _select_speaker_data(self, speaker):
indices = np.random.choice(self.test_indices_per_speaker[speaker], size=1)
return self.kx_test[indices]
def get_speaker_verification_data(self, positive_speaker, num_different_speakers):
all_negative_speakers = list(set(self.speakers_list) - {positive_speaker})
assert len(self.speakers_list) - 1 == len(all_negative_speakers)
negative_speakers = np.random.choice(all_negative_speakers, size=num_different_speakers, replace=False)
assert positive_speaker not in negative_speakers
anchor = self._select_speaker_data(positive_speaker)
positive = self._select_speaker_data(positive_speaker)
data = [anchor, positive]
data.extend([self._select_speaker_data(n) for n in negative_speakers])
return np.vstack(data)