-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathpassport_attack_2.py
347 lines (264 loc) · 11.7 KB
/
passport_attack_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import json
import os
import time
import pandas as pd
import torch
import torch.nn as nn
import passport_generator
from dataset import prepare_dataset
from experiments.utils import construct_passport_kwargs_from_dict
from models.alexnet_normal import AlexNetNormal
from models.alexnet_passport import AlexNetPassport
from models.alexnet_passport_private import AlexNetPassportPrivate
from models.layers.passportconv2d import PassportBlock
from models.layers.passportconv2d_private import PassportPrivateBlock
from models.resnet_normal import ResNet18, ResNet9
from models.resnet_passport import ResNet18Passport, ResNet9Passport
from models.resnet_passport_private import ResNet18Private
class DatasetArgs():
pass
def train(model, optimizer, criterion, trainloader, device):
model.train()
loss_meter = 0
acc_meter = 0
start_time = time.time()
for k, (d, t) in enumerate(trainloader):
d = d.to(device)
t = t.to(device)
optimizer.zero_grad()
pred = model(d)
loss = criterion(pred, t)
loss.backward()
optimizer.step()
acc = (pred.max(dim=1)[1] == t).float().mean()
loss_meter += loss.item()
acc_meter += acc.item()
print(f'Batch [{k + 1}/{len(trainloader)}]: '
f'Loss: {loss_meter / (k + 1):.4f} '
f'Acc: {acc_meter / (k + 1):.4f} ({time.time() - start_time:.2f}s)',
end='\r')
print()
loss_meter /= len(trainloader)
acc_meter /= len(trainloader)
return {'loss': loss_meter,
'acc': acc_meter,
'time': start_time - time.time()}
def test(model, criterion, valloader, device):
model.eval()
loss_meter = 0
acc_meter = 0
start_time = time.time()
with torch.no_grad():
for k, (d, t) in enumerate(valloader):
d = d.to(device)
t = t.to(device)
pred = model(d)
loss = criterion(pred, t)
acc = (pred.max(dim=1)[1] == t).float().mean()
loss_meter += loss.item()
acc_meter += acc.item()
print(f'Batch [{k + 1}/{len(valloader)}]: '
f'Loss: {loss_meter / (k + 1):.4f} '
f'Acc: {acc_meter / (k + 1):.4f} ({time.time() - start_time:.2f}s)',
end='\r')
print()
loss_meter /= len(valloader)
acc_meter /= len(valloader)
return {'loss': loss_meter,
'acc': acc_meter,
'time': time.time() - start_time}
def set_intermediate_keys(passport_model, pretrained_model, x, y=None):
with torch.no_grad():
for pretrained_layer, passport_layer in zip(pretrained_model.features, passport_model.features):
if isinstance(passport_layer, PassportBlock) or isinstance(passport_layer, PassportPrivateBlock):
passport_layer.set_key(x, y)
x = pretrained_layer(x)
if y is not None:
y = pretrained_layer(y)
def get_passport(passport_data, device):
n = 20 # any number
key_y, y_inds = passport_generator.get_key(passport_data, n)
key_y = key_y.to(device)
key_x, x_inds = passport_generator.get_key(passport_data, n)
key_x = key_x.to(device)
return key_x, key_y
def run_attack_2(rep=1, arch='alexnet', dataset='cifar10', scheme=1, loadpath='',
passport_config='passport_configs/alexnet_passport.json', tagnum=1):
epochs = {
'imagenet1000': 30
}.get(dataset, 100)
batch_size = 64
nclass = {
'cifar100': 100,
'imagenet1000': 1000
}.get(dataset, 10)
inchan = 3
lr = 0.01
device = torch.device('cuda')
trainloader, valloader = prepare_dataset({'transfer_learning': False,
'dataset': dataset,
'tl_dataset': '',
'batch_size': batch_size})
passport_kwargs, plkeys = construct_passport_kwargs_from_dict({'passport_config': json.load(open(passport_config)),
'norm_type': 'bn',
'sl_ratio': 0.1,
'key_type': 'shuffle'},
True)
if arch == 'alexnet':
model = AlexNetNormal(inchan, nclass, 'bn' if scheme == 1 else 'gn')
else:
ResNetClass = ResNet18 if arch == 'resnet18' else ResNet9
model = ResNetClass(num_classes=nclass,
norm_type='bn' if scheme == 1 else 'gn')
if arch == 'alexnet':
if scheme == 1:
passport_model = AlexNetPassport(inchan, nclass, passport_kwargs)
else:
passport_model = AlexNetPassportPrivate(inchan, nclass, passport_kwargs)
else:
if scheme == 1:
ResNetClass = ResNet18Passport if arch == 'resnet18' else ResNet9Passport
passport_model = ResNetClass(num_classes=nclass, passport_kwargs=passport_kwargs)
else:
if arch == 'resnet9':
raise NotImplementedError
passport_model = ResNet18Private(num_classes=nclass, passport_kwargs=passport_kwargs)
sd = torch.load(loadpath)
passport_model.load_state_dict(sd)
passport_model = passport_model.to(device)
sd = torch.load(loadpath)
model.load_state_dict(sd, strict=False) # need to load with strict because passport model no scale and bias
model = model.to(device)
for param in model.parameters():
param.requires_grad_(False)
# for fidx in [0, 2]:
# model.features[fidx].bn.weight.data.copy_(sd[f'features.{fidx}.scale'])
# model.features[fidx].bn.bias.data.copy_(sd[f'features.{fidx}.bias'])
if arch == 'alexnet':
for fidx in plkeys:
fidx = int(fidx)
model.features[fidx].bn.weight.data.copy_(passport_model.features[fidx].get_scale().view(-1))
model.features[fidx].bn.bias.data.copy_(passport_model.features[fidx].get_bias().view(-1))
model.features[fidx].bn.weight.requires_grad_(True)
model.features[fidx].bn.bias.requires_grad_(True)
else:
for fidx in plkeys:
layer_key, i, module_key = fidx.split('.')
def get_layer(m):
return m.__getattr__(layer_key)[int(i)].__getattr__(module_key)
convblock = get_layer(model)
passblock = get_layer(passport_model)
convblock.bn.weight.data.copy_(passblock.get_scale().view(-1))
convblock.bn.bias.data.copy_(passblock.get_bias().view(-1))
convblock.bn.weight.requires_grad_(True)
convblock.bn.bias.requires_grad_(True)
optimizer = torch.optim.SGD(model.parameters(),
lr=lr,
momentum=0.9,
weight_decay=0.0005)
# scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
# [int(epochs * 0.5), int(epochs * 0.75)],
# 0.1)
scheduler = None
criterion = nn.CrossEntropyLoss()
history = []
def evaluate():
print('Before training')
valres = test(model, criterion, valloader, device)
res = {}
for key in valres: res[f'valid_{key}'] = valres[key]
res['epoch'] = 0
history.append(res)
print()
# evaluate()
conv_weights_to_reset = []
total_weight_size = 0
if arch == 'alexnet':
sim = 0
for fidx in plkeys:
fidx = int(fidx)
w = model.features[fidx].bn.weight
size = w.size(0)
conv_weights_to_reset.append(w)
total_weight_size += size
model.features[fidx].bn.bias.data.zero_()
model.features[fidx].bn.weight.requires_grad_(True)
model.features[fidx].bn.bias.requires_grad_(True)
else:
for fidx in plkeys:
layer_key, i, module_key = fidx.split('.')
def get_layer(m):
return m.__getattr__(layer_key)[int(i)].__getattr__(module_key)
convblock = get_layer(model)
passblock = get_layer(passport_model)
w = convblock.bn.weight
size = w.size(0)
conv_weights_to_reset.append(w)
total_weight_size += size
convblock.bn.bias.data.zero_()
convblock.bn.weight.requires_grad_(True)
convblock.bn.bias.requires_grad_(True)
randidxs = torch.randperm(total_weight_size)
idxs = randidxs[:int(total_weight_size * args.flipperc)]
print(total_weight_size, len(idxs))
sim = 0
for w in conv_weights_to_reset:
size = w.size(0)
# wsize of first layer = 64, e.g. 0~63 - 64 = -64~-1, this is the indices within the first layer
print(len(idxs), size)
widxs = idxs[(idxs - size) < 0]
# reset the weights but remains signature sign bit
origsign = w.data.sign()
newsign = origsign.clone()
# reverse the sign on target bit
newsign[widxs] *= -1
# assign new signature
w.data.copy_(newsign)
sim += ((w.data.sign() == origsign).float().mean())
# remove all indices from first layer
idxs = idxs[(idxs - size) >= 0] - size
print('signature similarity', sim / len(conv_weights_to_reset))
evaluate()
dirname = f'logs/passport_attack_2/{loadpath.split("/")[1]}/{loadpath.split("/")[2]}'
os.makedirs(dirname, exist_ok=True)
json.dump(vars(args), open(f'{dirname}/{arch}-{scheme}-last-{dataset}-{rep}-{tagnum}.json', 'w+'))
for ep in range(1, epochs + 1):
if scheduler is not None:
scheduler.step()
print(f'Learning rate: {optimizer.param_groups[0]["lr"]}')
print(f'Epoch {ep:3d}:')
print('Training')
trainres = train(model, optimizer, criterion, trainloader, device)
print('Testing')
valres = test(model, criterion, valloader, device)
print()
res = {}
for key in trainres: res[f'train_{key}'] = trainres[key]
for key in valres: res[f'valid_{key}'] = valres[key]
res['epoch'] = ep
history.append(res)
torch.save(model.state_dict(),
f'{dirname}/{arch}-{scheme}-last-{dataset}-{rep}-{tagnum}.pth')
histdf = pd.DataFrame(history)
histdf.to_csv(f'{dirname}/{arch}-{scheme}-history-{dataset}-{tagnum}.csv')
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='fake attack 2: reverse engineer passport scale & bias')
parser.add_argument('--rep', default=1, type=int)
parser.add_argument('--arch', default='alexnet', choices=['alexnet', 'resnet18', 'resnet9'])
parser.add_argument('--dataset', default='cifar10', choices=['cifar10', 'cifar100', 'imagenet1000'])
parser.add_argument('--scheme', default=1, choices=[1, 2, 3], type=int)
parser.add_argument('--loadpath', default='', help='path to model to be attacked')
parser.add_argument('--passport-config', default='', help='path to passport config')
parser.add_argument('--tagnum', default=torch.randint(100000, ()).item(), type=int,
help='tag number of the experiment')
parser.add_argument('--flipperc', default=0.5, type=float, help='flip percentage on signature'
' for scale direction')
args = parser.parse_args()
run_attack_2(args.rep,
args.arch,
args.dataset,
args.scheme,
args.loadpath,
args.passport_config,
args.tagnum)