forked from shuishen112/tensorflow-deep-qa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
320 lines (244 loc) · 11 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import pandas as pd
import numpy as np
from collections import Counter
import os
import logging
from tqdm import tqdm, tqdm_pandas
import jieba
import pickle
from functools import wraps
import time
import spacy
import tensorflow as tf
from multiprocessing import Pool, cpu_count
from nltk.corpus import stopwords
en_stopwords = stopwords.words('english')
tqdm.pandas(tqdm,leave = True)
nlp = spacy.blank("en")
def removeUnanswerdQuestion(df):
counter= df.groupby("s1").apply(lambda group: sum(group["flag"]))
questions_have_correct=counter[counter>0].index
counter= df.groupby("s1").apply(lambda group: sum(group["flag"]==0))
questions_have_uncorrect=counter[counter>0].index
counter=df.groupby("s1").apply(lambda group: len(group["flag"]))
questions_multi=counter[counter>1].index
return df[df["s1"].isin(questions_have_correct) & df["s1"].isin(questions_have_correct) & df["s1"].isin(questions_have_uncorrect)].reset_index()
# calculate the time
def log_time_delta(func):
@wraps(func)
def _deco(*args, **kwargs):
start = time.time()
ret = func(*args, **kwargs)
end = time.time()
delta = end - start
print( "%s runed %.2f seconds"% (func.__name__,delta))
return ret
return _deco
def cut(sent):
words = sent.lower().split()
words = [w for w in words if w not in en_stopwords]
return words
# return sent.lower().split()
def word_overlap(row):
question = cut(row["s1"])
answer = cut(row["s2"])
overlap = set(answer).intersection(set(question))
return len(overlap)
class QA_dataset(object):
def __init__(self,train_file = None,dev_file = None,test_file = None,args = None):
self.train_set,self.dev_set,self.test_set = None,None,None
self.logger = logging.getLogger('QA')
self.args = args
if train_file:
self.train_set = self.load_data(train_file)
self.logger.info('Train set size: {}'.format(len(self.train_set)))
print('Train set size: {}'.format(len(self.train_set)))
print('Train set unique s1:{}'.format(len(self.train_set['s1'].unique())))
if dev_file:
self.dev_set = self.load_data(dev_file)
self.logger.info('dev set size:{}'.format(len(self.dev_set)))
print('dev set size:{}'.format(len(self.dev_set)))
if test_file:
self.test_set = self.load_data(test_file)
self.logger.info('test set size:{}'.format(len(self.test_set)))
print('test set size:{}'.format(len(self.test_set)))
def process_pairs(self):
# self.df_neg = self.train_set[self.train_set['flag'] == 0]['s2'].reset_index()
# self.df_train_pairs = self.train_set.groupby('search_id').progress_apply(self.triple_pair).dropna()
# self.df_test_pairs = self.test_set.groupby('search_id').progress_apply(self.triple_pair).dropna()
self.df_train_pairs = self.train_set.progress_apply(self.point_wise_pair,axis = 1)
self.df_test_pairs = self.test_set.progress_apply(self.point_wise_pair,axis = 1)
tfrecords_filename_train = self.args.train_tf_records
tfrecords_filename_test = self.args.test_tf_records
self.build_feature(self.df_train_pairs, tfrecords_filename_train)
self.build_feature(self.df_test_pairs, tfrecords_filename_test)
def build_feature(self,df,tf_file_name):
writer = tf.python_io.TFRecordWriter(tf_file_name)
for index,row in df.iterrows():
s1_id = np.array(row['s1_id']).tostring()
s2_id = np.array(row['s2_id']).tostring()
flag = row['flag']
overlap = word_overlap(row)
example = tf.train.Example(features = tf.train.Features(
feature = {
's1_id':tf.train.Feature(bytes_list = tf.train.BytesList(value = [s1_id])),
's2_id':tf.train.Feature(bytes_list = tf.train.BytesList(value = [s2_id])),
'flag':tf.train.Feature(int64_list = tf.train.Int64List(value = [flag])),
'overlap':tf.train.Feature(int64_list = tf.train.Int64List(value = [overlap]))
}))
writer.write(example.SerializeToString())
writer.close()
def load_data(self,data_path):
data = pd.read_csv(data_path,sep = '\t',names = ['s1','s2','flag'],quoting = 3)
if self.args.debug:
data = data[:1000]
if self.args.clean:
data = removeUnanswerdQuestion(data)
return data
@log_time_delta
def get_alphabet(self,corpuses):
word_counter = Counter()
for corpus in corpuses:
for texts in [corpus['s1'].unique(), corpus['s2']]:
for sentence in texts:
tokens = cut(sentence)
for token in set(tokens):
word_counter[token] += 1
word_dict = {w: index + 2 for (index, w) in enumerate(list(word_counter))}
word_dict['NULL'] = 0
word_dict['UNK'] = 1
index_to_word = {word_dict[w]: w for w in word_dict}
self.index_to_word = index_to_word
self.word_dict = word_dict
print('alphabet_size: {}'.format(len(self.word_dict)))
return word_dict
# print(self.query_dict)
def get_embedding(self,fname,vocab,dim = 100):
embeddings = np.random.normal(0,1,size = [len(vocab),dim])
word_vecs = {}
count = 0
with open(fname,encoding = 'utf-8') as f:
i = 0
for line in f:
i += 1
if i % 100000 == 0:
print ('epch %d' % i)
items = line.strip().split(' ')
if len(items) == 2:
vocab_size, embedding_size = items[0], items[1]
print (vocab_size, embedding_size)
else:
word = items[0]
if word in vocab:
count += 1
embeddings[vocab[word]] = items[1:]
print('there are {} words can be found in dict'.format(count))
return embeddings
def convert_to_word_ids(self,sentence,max_len = 40):
indices = []
tokens = cut(sentence)
for word in tokens:
if word in self.word_dict:
indices.append(self.word_dict[word])
else:
continue
result = indices + [self.word_dict['NULL']] * (max_len - len(indices))
return result[:max_len]
def point_wise_pair(self,row):
return pd.Series({'s1':row['s1'],'s2':row['s2'],'s1_id':self.convert_to_word_ids(row['s1']),'s2_id':self.convert_to_word_ids(row['s2']),'flag':row['flag']})
# noting that the code here is different from the previous code
def triple_pair(self,group):
question = group['s1'].tolist()
pos_answer = group[group['flag'] == 1]['s2']
neg_answer = group[group['flag'] == 0]['s2'].reset_index()
if len(pos_answer) > 0:
for pos in pos_answer:
neg_index = np.random.choice(neg_answer)
neg = neg_answer.loc[neg_index]['s2']
return pd.Series({'s1_id':self.convert_to_word_ids(question[0]),
's2_pos_id':self.convert_to_word_ids(pos),
's2_neg_id':self.convert_to_word_ids(neg)})
@log_time_delta
def batch_iter_pandas(self,df,batch_size,shuffle = False,args = None):
if shuffle:
df.sample(frac = 1).reset_index(drop = True)
def chunker(seq, size):
return (seq[pos:pos + size] for pos in range(0,len(seq),size))
batches = chunker(df,batch_size)
for b in batches:
yield(b['s1_id'].tolist(),b['s2_id'].tolist(),b['flag'].tolist())
def get_record_parser(self,serialized_example):
features = tf.parse_single_example(serialized_example,
features = {
's1_id': tf.FixedLenFeature([],tf.string),
's2_id':tf.FixedLenFeature([],tf.string),
'flag':tf.FixedLenFeature([],tf.int64),
'overlap':tf.FixedLenFeature([],tf.int64)
})
s1_id = tf.decode_raw(features['s1_id'],tf.int32)
s2_id = tf.decode_raw(features['s2_id'],tf.int32)
flag = features['flag']
overlap = features['overlap']
return {'s1_id':s1_id,'s2_id':s2_id,'overlap':overlap},flag
def input_fn(self,filenames, batch_size = 32, num_epochs = 1,perform_shuffle = False):
data_set = tf.data.TFRecordDataset(filenames).map(self.get_record_parser,num_parallel_calls = cpu_count())
if perform_shuffle:
data_set = data_set.shuffle(buffer_size=256)
data_set = data_set.repeat(num_epochs)
data_set = data_set.batch(batch_size)
iterator = data_set.make_one_shot_iterator()
batch_features, batch_labels = iterator.get_next()
return batch_features, batch_labels
# data_path = 'data/trec'
# train_file = os.path.join(data_path,'train.txt')
# test_file = os.path.join(data_path,'test.txt')
# dev_file = os.path.join(data_path,'test.txt')
# class config(object):
# debug = True
# loss = 'pair_wise_loss'
# train_tf_records = 'data/trec/train.tfrecords'
# test_tf_records = 'data/trec/test.tfrecords'
# args = config()
# data_set = QA_dataset(train_file,dev_file,test_file,args)
# data_set.get_alphabet([data_set.train_set,data_set.test_set])
# # print(data_set.word_dict)
# data_set.process_pairs()
# batch = data_set.batch_iter_pandas(data_set.df_train_pairs,60,shuffle = True,args = args)
# print(data_set.df_train_pairs)
# filenames = 'data/trec/train.tfrecords'
# ds = tf.data.TFRecordDataset(filenames).map(data_set.get_record_parser,num_parallel_calls = 8).prefetch(500000)
# # iterator = ds.make_one_shot_iterator()
# # next_element = iterator.get_next()
# next_element = data_set.input_fn(filenames)
# with tf.Session() as sess:
# print(sess.run(next_element))
# with tf.Session() as sess:
# for serialized_example in tf.python_io.tf_record_iterator(filenames):
# features = tf.parse_single_example(serialized_example,
# features = {
# 's1_id': tf.FixedLenFeature([],tf.string),
# 's1_id':tf.FixedLenFeature([],tf.string),
# 'flag':tf.FixedLenFeature([],tf.int64)
# })
# s1_id = tf.decode_raw(features['s1_id'],tf.int32)
# print(sess.run(s1_id))
# ds = ds.batch(32)
# iterator = ds.make_one_shot_iterator()
# batch_str = iterator.get_next()
# for d in batch:
# q,a,a_n = d
# print(a)
# for d in batch:
# q,a,a_n = zip(*d)
# print(q)
# print('positive rate:{}'.format(df['flag'].sum() / len(df)))
# print('positive unique:{}'.format(len(df['query'].unique())))
# print('s2 unique:{}'.format(len(df['s2'].unique())))
# print('number of positive query:{}'.format(df['flag'].sum()))
# # print(data_set.train_set['flag'])
# # print(data_set.test_set)
# data_set.get_alphabet([data_set.train_set,data_set.test_set])
# # embeddings = data_set.get_app_embedding('data/app_embedding',data_set.s2_dict,dim = 150)
# # print(data_set.query_dict)
# # print(data_set.s2_dict)
# batch = data_set.batch_iter(data_set.train_set,60,shuffle = True,args = args)