-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathagents.py
308 lines (252 loc) · 11.5 KB
/
agents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
from GCN import GCN,GAT
import torch.nn.functional as F
import torch
from city import City
from math_utils import softmax, softmax_pow
from graph_utils import *
POLICY_ARGMAX = 0
POLICY_POW = 1
POLICY_EXP = 2
POLICY_ENTROPY = 3
# class for different agent strategy
class Agent:
def __init__(self, name):
self.name = name
self.do_epsilon_exploration = True
self.gamma = 0.9
def train(self, next_observations):
pass
def get_policy(self, observations):
pass
def set_eval_mode(self):
pass
def save_model(self, save_model_path):
pass
def load_model(self, load_model_path):
pass
class RandomAgent(Agent):
def __init__(self):
super().__init__('random')
def get_policy(self, observations):
return None
class ProportionalAgent(Agent):
def __init__(self, city: City, proportional='order', policy_pow=1, strategy=1, **kwargs):
t_name = 'proportional'
temperature = kwargs.get("temperature", 1)
if strategy == POLICY_ARGMAX:
t_name = t_name + '_max_eps_%s' % (str(kwargs.get("epsilon_min", 0)))
elif strategy == POLICY_POW:
t_name = t_name + '_%s' % (str(policy_pow))
elif strategy == POLICY_EXP:
t_name = t_name + '_softmax_%s' % (str(temperature))
super().__init__(t_name)
self.city = city
self.order_proportional = (proportional=='order')
self.policy_pow = policy_pow
self.strategy = strategy
def get_policy(self, observations):
policies = [[] for _ in range(self.city.N)]
for road in self.city.roads:
policy = np.zeros((len(road.reachable_roads, )))
for i, road_index in enumerate(road.reachable_roads):
v = observations[road_index][1]
if not self.order_proportional:
v = max(v-observations[road_index][0], 0)
policy[i] = v
if policy.sum() == 0:
policy.fill(1)
if self.strategy == 0:
policy = np.where(policy == np.amax(policy), 1.0, 0.0)
policy /= policy.sum()
elif self.strategy == 1:
policy /= policy.sum()
if self.policy_pow != 1:
policy = softmax_pow(policy, self.policy_pow)
else:
policy = softmax(policy, self.policy_pow)
policies[road.uuid] = policy
return policies
class DQNAgent(Agent):
def __init__(self, city: City, model_type='gcn', policy_pow=1.0, strategy=POLICY_POW, consider_speed=True, **kwargs):
temperature = kwargs.get("temperature", 1)
t_name = 'dqn'
if strategy == POLICY_ARGMAX:
t_name = t_name + '_%s_max_eps_%s' % (model_type, str(kwargs.get("epsilon_min", 0)))
elif strategy == POLICY_POW:
t_name = t_name + '_%s_%s' % (model_type, str(policy_pow))
elif strategy == POLICY_EXP:
t_name = t_name + '_%s_softmax_%s' % (model_type, str(temperature))
elif strategy == POLICY_ENTROPY:
t_name = t_name + '_%s_entropy_softmax_%s' % (model_type, str(temperature))
super().__init__(t_name)
# reverse direction & add self loop
newG = city.G.reverse()
for node in newG.nodes():
newG.add_edge(node, node)
self.strategy = strategy
city.consider_speed = consider_speed
if model_type == 'gcn':
self.model = GCN(newG,
in_feats=3 if city.consider_speed else 2,
n_hidden=8,
n_classes=1,
n_layers=4,
activation=F.relu)
else:
self.model = GAT(newG,
in_dim=3 if city.consider_speed else 2,
num_hidden=8,
num_classes=1,
num_layers=4,
activation=F.relu)
self.optimizer = torch.optim.Adam(self.model.parameters())
# define model and target model
self.model.cuda()
self.model.train()
self.target_model = copy.deepcopy(self.model)
self.target_model.cuda()
self.target_model_update_period = 10
self.time_step = 0
self.city = city
self.observations = None
# Q_V(s, t)
self.q_values = None
# sigma pi(s,t) Q(s,t)
self.next_target_expected_return_values = torch.zeros((self.city.N,)).cuda()
# for memoization
self.next_target_expected_return_values_valid = np.zeros((self.city.N,), dtype=np.int32)
self.policy_pow = policy_pow
self.do_epsilon_exploration = kwargs.get("do_epsilon_exploration", True)
self.temperature = temperature
if kwargs.get("q_value_debug", False):
print("Debug file create")
self.debug_file = open("%s/q_value_log_%s.txt" % (kwargs.get("log_save_folder"), self.name), 'w')
else:
self.debug_file = None
self.q_values_saved = None
def save_model(self, save_path):
print("SAVING")
torch.save(self.model.state_dict(), save_path)
def load_model(self, load_path):
self.model.load_state_dict(torch.load(load_path))
def set_eval_mode(self):
self.model.eval()
def update_target_model(self):
self.target_model.load_state_dict(self.model.state_dict())
def train(self, next_observations):
if self.time_step % self.target_model_update_period == 0:
self.update_target_model()
with torch.no_grad():
# update target for Q_V(s, t)
target_q_values = torch.zeros(self.city.N, 1).cuda()
target_q_values_counts = torch.zeros(self.city.N, 1).cuda()
# Q_V(s, t+1) = f(s_{t+1})
next_observations = next_observations.cuda()
next_target_q_values = self.target_model(next_observations)
# for memoization
self.next_target_expected_return_values_valid.fill(-1)
total_agents = self.city.actionable_drivers + self.city.non_actionable_drivers
for driver in total_agents:
# got reward this turn
if driver.current_serving_call is not None:
target_q_values[driver.road_index] += driver.current_serving_call.price
target_q_values_counts[driver.road_index] += 1
else:
road = self.city.roads[driver.road_index]
neighbors = self.city.roads[driver.road_index].reachable_roads
# (1) controllable agents
if driver.road_position + road.speed * self.city.city_time_unit_in_minute > road.length and len(neighbors) > 1:
# (a) never calculated before
if self.next_target_expected_return_values_valid[driver.road_index] == -1:
# pi(s, t+1)
next_target_policy = self.get_policy_from_action_values(next_target_q_values[neighbors].squeeze())
# sigma pi(s,t+1) Q(s,t+1)
next_q_values = next_target_q_values[neighbors].squeeze()
if self.strategy == POLICY_ENTROPY:
m = self.temperature * torch.log(torch.sum(torch.exp(next_q_values / self.temperature)))
else:
m = torch.dot(next_q_values, next_target_policy)
# set result and memorize it.
self.next_target_expected_return_values[driver.road_index] = m
self.next_target_expected_return_values_valid[driver.road_index] = 1
# (b) just return previously calculated value.
else:
m = self.next_target_expected_return_values[driver.road_index]
# (2) non-controllable agents
else:
m = next_target_q_values[driver.road_index]
target_q_values[driver.road_index] += self.gamma * m # gamma = 0.9
target_q_values_counts[driver.road_index] += 1
# For some roads, there are no drivers
no_info = (target_q_values_counts == 0).int()
# for road with >= 1 drivers: sum / (N + 0) = avg
# for road with 0 driver: 0 / (0 + 1) = 0
target_q_values /= (target_q_values_counts + no_info)
# for road with 0 driver : don't have to update.
# but to give a penalty for uncertainty(no experience), multiply by 0.9
target_q_values += self.q_values * no_info * 0.9
# should be between (0, 1)
target_q_values = torch.clamp(target_q_values, min=1e-8, max=1)
# set loss as weighted MSE
difference = (self.q_values - target_q_values)
weighted_mse = (difference ** 2) * (target_q_values_counts + no_info)
loss = torch.mean(weighted_mse)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# for debugging
debug = False
if self.city.city_time % 10 == 0 and debug:
debug_target_q_values = target_q_values.squeeze().cpu().tolist()
debug_q_values = self.q_values.squeeze().cpu().tolist()
index = list(range(self.city.N))
debug_q_values_info = list(zip(debug_target_q_values, debug_q_values, index))
debug_q_values_info.sort(reverse=True, key=lambda x:x[0])
print(debug_q_values_info[0:30])
print(loss)
def get_policy(self, observations, use_target_model=False, to_numpy=True):
policy = [None for _ in range(self.city.N)]
model = self.model if not use_target_model else self.target_model
# Q_V(j, t) = f(s_t)
q_values = model(observations.cuda())
#if self.debug_file:
#self.q_values_saved = q_values[0:8]
#print("Example Q values", self.name, q_values[0:10])
#self.debug_file.flush()
for v in range(self.city.N):
out_nodes = self.city.roads[v].reachable_roads
if len(out_nodes) == 0:
policy[v] = [-1]
else:
possible_action_values = q_values[out_nodes].squeeze()
policy_v = self.get_policy_from_action_values(possible_action_values)
if to_numpy:
policy_v = policy_v.cpu().detach().numpy()
policy[v] = policy_v
self.q_values = q_values
self.observations = observations
return policy
def get_policy_from_action_values(self, q_values: torch.Tensor):
strategy = self.strategy
if strategy == POLICY_ARGMAX:
m = torch.max(q_values)
p = (q_values == m).float()
# Q^policy_pow
elif strategy == POLICY_POW:
if q_values.sum() == 0:
p = torch.ones_like(q_values)
p = p / p.sum()
else:
p = q_values / q_values.sum()
p = p / torch.max(p)
p = p**self.policy_pow
# exp(Q/temperature)
elif strategy == POLICY_EXP or strategy == POLICY_ENTROPY:
q_values_max = torch.max(q_values)
p = torch.exp((q_values-q_values_max) / self.temperature)
if torch.isnan(p).any():
print(q_values.sum())
print(q_values)
print("NAN")
p /= p.sum()
return p