-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathper.py
190 lines (150 loc) · 7.7 KB
/
per.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import numpy as np
from collections import namedtuple, deque
import torch
import config
device = config.device
class SumTree():
"""
This SumTree code is modified version and the original code is from:
https://github.com/jaara/AI-blog/blob/master/SumTree.py
Store the data with its priority in tree and data frameworks.
"""
def __init__(self, capacity):
self.capacity = capacity # for all priority values
self.data_pointer = 0
self.tree = np.zeros(2 * capacity - 1)
# [--------------parent nodes-------------][-------leaves to record priority-------]
# size: capacity - 1 size: capacity
self.data = np.zeros(capacity, dtype=object) # for all transitions
# [--------------data frame-------------]
# size: capacity
def add(self, p, data):
tree_idx = self.data_pointer + self.capacity - 1
self.data[self.data_pointer] = data # update data_frame
self.update(tree_idx, p) # update tree_frame
self.data_pointer += 1
if self.data_pointer >= self.capacity: # replace when exceed the capacity
self.data_pointer = 0
def update(self, tree_idx, p):
change = p - self.tree[tree_idx]
self.tree[tree_idx] = p
# then propagate the change through tree
while tree_idx != 0: # this method is faster than the recursive loop in the reference code
tree_idx = (tree_idx - 1) // 2
self.tree[tree_idx] += change
def get_leaf(self, v):
"""
Tree structure and array storage:
Tree index:
0 -> storing priority sum
/ \
1 2
/ \ / \
3 4 5 6 -> storing priority for transitions
Array type for storing:
[0,1,2,3,4,5,6]
"""
parent_idx = 0
while True: # the while loop is faster than the method in the reference code
cl_idx = 2 * parent_idx + 1 # this leaf's left and right kids
cr_idx = cl_idx + 1
if cl_idx >= len(self.tree): # reach bottom, end search
leaf_idx = parent_idx
break
else: # downward search, always search for a higher priority node
if v <= self.tree[cl_idx] or self.tree[cr_idx] == 0.0:
parent_idx = cl_idx
else:
v -= self.tree[cl_idx]
parent_idx = cr_idx
data_idx = leaf_idx - self.capacity + 1
return leaf_idx, self.tree[leaf_idx], self.data[data_idx]
@property
def total_priority(self):
return self.tree[0] # the root
def __len__(self):
"""Return the current size of internal memory."""
return len(self.data)
class PrioritisedExpReplay(): # stored as ( s, a, r, s_ ) in SumTree
"""
This SumTree code is modified version and the original code is from:
https://github.com/jaara/AI-blog/blob/master/Seaquest-DDQN-PER.py
and was further adopted to work smoothly with Pytorch and named tuples
"""
epsilon = config.PER_epsilon # small amount to avoid zero priority
alpha = config.PER_alpha # [0~1] convert the importance of TD error to priority
beta = config.PER_beta # importance-sampling, from initial value increasing to 1
beta_increment_per_sampling = config.PER_beta_increment_per_sampling
abs_err_upper = config.PER_abs_err_upper # clipped abs error
def __init__(self, capacity, batch_size, seed):
self.tree = SumTree(capacity)
self.batch_size = batch_size
self.seed = np.random.seed(seed)
#type definition for the storage objects - makes extraction easier
self.experience_type = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"])
def store(self, experience):
state, action, reward, next_state, done = experience
transition = self.experience_type(state, action, reward, next_state, done)
max_p = np.max(self.tree.tree[-self.tree.capacity:])
if max_p == 0.0:
max_p = self.abs_err_upper
self.tree.add(max_p, transition) # set the max p for new p
"""
- First, to sample a minibatch of k size, the range [0, priority_total] is / into k ranges.
- Then a value is uniformly sampled from each range
- We search in the sumtree, the experience where priority score correspond to sample values are retrieved from.
- Then, we calculate IS weights for each minibatch element
"""
def sample(self):
# Create a sample array that will contains the minibatch
memory_b = []
n = self.batch_size
b_idx, b_ISWeights = np.empty((n,), dtype=np.int32), np.empty((n, 1), dtype=np.float32)
# Calculate the priority segment
# Here, as explained in the paper, we divide the Range[0, ptotal] into n ranges
priority_segment = self.tree.total_priority / n # priority segment
# Here we increasing the beta param each time we sample a new minibatch
self.beta = np.min([1., self.beta + self.beta_increment_per_sampling]) # max = 1
# Calculating the max_weight
p_min = max(self.epsilon, np.min(self.tree.tree[-self.tree.capacity:]) / self.tree.total_priority)
max_weight = (p_min * n) ** (-self.beta)
for i in range(n):
"""
A value is uniformly sample from each range
"""
start, end = priority_segment * i, priority_segment * (i + 1)
value = np.random.uniform(start, end)
"""
Experience that correspond to each value is retrieved
"""
index, priority, data = self.tree.get_leaf(value)
#P(j)
sampling_probabilities = priority / self.tree.total_priority
# IS = (1/N * 1/P(i))**b /max wi == (N*P(i))**-b /max wi
#if i ==7:
# print(f"{n} {sampling_probabilities} {self.beta} {max_weight} {p_min}")
b_ISWeights[i, 0] = np.power(n * sampling_probabilities, -self.beta)/ max_weight
b_idx[i] = index
experience = data
memory_b.append(experience)
experiences_batch = self._extract_tuples(memory_b)
return b_idx, experiences_batch, b_ISWeights
def _extract_tuples(self, experiences_batch):
states = torch.from_numpy(np.vstack([e.state for e in experiences_batch if e is not None])).float().to(device)
actions = torch.from_numpy(np.vstack([e.action for e in experiences_batch if e is not None])).long().to(device)
rewards = torch.from_numpy(np.vstack([e.reward for e in experiences_batch if e is not None])).float().to(device)
next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences_batch if e is not None])).float().to(device)
dones = torch.from_numpy(np.vstack([e.done for e in experiences_batch if e is not None]).astype(np.uint8)).float().to(device)
return states, actions, rewards, next_states, dones
def batch_update(self, tree_idx, abs_errors):
"""
Batch update is used to recalculate priorities in the sumtree
"""
abs_errors += self.epsilon # convert to abs and avoid 0
clipped_errors = np.minimum(abs_errors, self.abs_err_upper)
ps = np.power(clipped_errors, self.alpha)
for ti, p in zip(tree_idx, ps):
self.tree.update(ti, p)
def __len__(self):
"""Return the current size of internal memory."""
return len(self.tree)