-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathduel_dqn_agent_PER.py
156 lines (115 loc) · 6.18 KB
/
duel_dqn_agent_PER.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import numpy as np
import random
from collections import namedtuple, deque
# Import Dual network model for the agent
from model import Duel_QNetwork
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from custom_loss import huber_loss
from per import PrioritisedExpReplay
#All parameters are stored in the config (LR/Buffer size / etc.)
import config
class Agent():
"""Interacts with and learns from the environment."""
def __init__(self, state_size, action_size, seed,train = True):
"""Initialize an Agent object.
Params
======
state_size (int): dimension of each state
action_size (int): dimension of each action
seed (int): random seed
train - is agent being trained
"""
self.state_size = state_size
self.action_size = action_size
self.seed = random.seed(seed)
self.train = train
# Duel Double Q-Network
self.qnetwork_local = Duel_QNetwork(state_size, action_size, seed).to(config.device)
self.qnetwork_target = Duel_QNetwork(state_size, action_size, seed).to(config.device)
# Adam was showing best results in my tests , adding amsgrad=True appeared to increase the learning slightly
self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=config.LR, amsgrad=True)
# Prioritised Experience Replay
self.memory = PrioritisedExpReplay(config.BUFFER_SIZE, config.BATCH_SIZE, seed)
# Initialize time step (for updating every UPDATE_EVERY steps)
self.t_step = 0
self.target_net_step = 0
print(f"Using Agent defined in {type(self)} with LR={config.LR} and update rate={config.UPDATE_EVERY}")
def step(self, state, action, reward, next_state, done):
# Save experience in PER (wrapped in a tuple so that it can sent as a single argument)
self.memory.store((state, action, reward, next_state, done))
# This effectively skips learning step on UPDATE_EVERY steps
self.t_step = (self.t_step + 1) % config.UPDATE_EVERY
if self.t_step == 0:
# If enough samples are available in memory, get random subset and learn
if len(self.memory) > config.BATCH_SIZE:
# PER needs to be updated with Weights and tree_indexes (specific to this implementation)
# we extract them all here and pass to learn where they will be applied
tree_idx, experiences, IS_weights = self.memory.sample()
self.learn(experiences, config.GAMMA, tree_idx, IS_weights)
def act(self, state, eps=0.):
"""Returns actions for given state as per current policy.
Params
======
state (array_like): current state
eps (float): epsilon, for epsilon-greedy action selection
"""
state = torch.from_numpy(state).float().unsqueeze(0).to(config.device)
#sets network in eval mode which means no gradient is calculated (yet)
self.qnetwork_local.eval()
with torch.no_grad():
action_values = self.qnetwork_local(state)
self.qnetwork_local.train()
# Epsilon-greedy action selection or if it's not training
if random.random() > eps or (not self.train):
return np.argmax(action_values.cpu().data.numpy())
else:
return random.choice(np.arange(self.action_size))
def learn(self, experiences, gamma, tree_idx, IS_weights):
"""Update value parameters using given batch of experience tuples.
Params
======
experiences (Tuple[torch.Variable]): tuple of (s, a, r, s', done) tuples
gamma (float): discount factor
tree_idx - indexes which will be used to update SumTree (PER)
IS_weights - weights to apply to the loss function - (part of PER requirement)
"""
states, actions, rewards, next_states, dones = experiences
self.qnetwork_local.eval()
self.qnetwork_target.eval()
#returns argmax along axis=1 and then wraps the tensor in another tensor pushing it's rank + 1
local_actions = self.qnetwork_local(next_states).max(1)[1].unsqueeze(1)
target_action_values = self.qnetwork_target(next_states).gather(1,local_actions)
action_values_current = self.qnetwork_local(states).gather(1,actions)
# Calculate expected return based on Target network (Double network specific)
expected = rewards + (gamma * target_action_values * (1 - dones))
# PER needs to be updated with absolute errors in order to calculate relevant priorities
absolute_errors = torch.abs(action_values_current - expected)
self.memory.batch_update(tree_idx, absolute_errors.detach().cpu().numpy())
# zero the parameter (weight) gradients
self.optimizer.zero_grad()
self.qnetwork_local.train()
self.qnetwork_target.train()
# Original DQN paper mentioned they were using Huber-Loss and while PyTorch has it's own implementation
# that implementation doesn't allow for custom weights (part of PER requirement)
# as a result i had to reimplement huber-loss (this one comes from custom_loss module)
loss = huber_loss(action_values_current, expected, torch.as_tensor(IS_weights).to(config.device))
# backward pass to calculate the parameter gradients
loss.backward()
# update the parameters
self.optimizer.step()
# ------------------- update target network ------------------- #
self.soft_update(self.qnetwork_local, self.qnetwork_target, config.TAU)
def soft_update(self, local_model, target_model, tau):
"""Soft update model parameters.
θ_target = τ*θ_local + (1 - τ)*θ_target
Params
======
local_model (PyTorch model): weights will be copied from
target_model (PyTorch model): weights will be copied to
tau (float): interpolation parameter
"""
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)