-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathstats.go
205 lines (172 loc) · 4.85 KB
/
stats.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
package gambas
import (
"fmt"
"math"
"sort"
)
// StatsFunc represents any function that accepts dataset as input and returns StatsResult as output.
type StatsFunc func(dataset []interface{}) StatsResult
// StatsResult holds the results of calculation from a statistics function such as Mean or Median.
type StatsResult struct {
UsedFunc string
Result float64
Err error
}
// Count counts the number of non-NaN elements in a dataset.
func Count(dataset []interface{}) StatsResult {
count := 0
for _, v := range dataset {
if v != nil || v != math.NaN() {
count++
}
}
return StatsResult{"Count", float64(count), nil}
}
// Mean returns the mean of the elements in a dataset.
func Mean(dataset []interface{}) StatsResult {
mean := 0.0
data, err := interface2F64Slice(dataset)
if err != nil {
return StatsResult{"Mean", math.NaN(), err}
}
total := len(data)
if total == 0 {
return StatsResult{"Mean", math.NaN(), fmt.Errorf("no elements in this column")}
}
for _, v := range data {
mean += v
}
mean /= float64(len(data))
roundedMean := math.Round(mean*1000) / 1000
return StatsResult{"Mean", roundedMean, nil}
}
// Median returns the median of the elements in a dataset.
func Median(dataset []interface{}) StatsResult {
data, err := interface2F64Slice(dataset)
if err != nil {
return StatsResult{"Median", math.NaN(), err}
}
sort.Float64s(data)
total := len(data)
if total == 0 {
return StatsResult{"Median", math.NaN(), fmt.Errorf("no elements in this column")}
}
if total%2 == 0 {
lower := data[total/2-1]
upper := data[total/2]
median := (lower + upper) / 2
roundedMedian := math.Round(median*1000) / 1000
return StatsResult{"Median", roundedMedian, nil}
} else {
median := data[(total+1)/2-1]
roundedMedian := math.Round(median*1000) / 1000
return StatsResult{"Median", roundedMedian, nil}
}
}
// Std returns the sample standard deviation of the elements in a dataset.
func Std(dataset []interface{}) StatsResult {
std := 0.0
meanResult := Mean(dataset) // this also checks that all data can be converted to float64.
if meanResult.Err != nil {
return StatsResult{"Std", math.NaN(), meanResult.Err}
}
numerator := 0.0
for _, v := range dataset {
temp := math.Pow(v.(float64)-meanResult.Result, 2)
numerator += temp
}
std = math.Sqrt(numerator / float64(len(dataset)-1))
roundedStd := math.Round(std*1000) / 1000
return StatsResult{"Std", roundedStd, nil}
}
// Min returns the smallest element in a dataset.
func Min(dataset []interface{}) StatsResult {
data, err := interface2F64Slice(dataset)
if err != nil {
return StatsResult{"Min", math.NaN(), err}
}
if len(data) == 0 {
return StatsResult{"Min", math.NaN(), fmt.Errorf("no elements in this column")}
}
min := math.MaxFloat64
for _, v := range data {
if v < min {
min = v
}
}
return StatsResult{"Min", min, nil}
}
// Max returns the largest element is a dataset.
func Max(dataset []interface{}) StatsResult {
data, err := interface2F64Slice(dataset)
if err != nil {
return StatsResult{"Max", math.NaN(), err}
}
if len(data) == 0 {
return StatsResult{"Max", math.NaN(), fmt.Errorf("no elements in this column")}
}
max := 0.0
for _, v := range data {
if v > max {
max = v
}
}
return StatsResult{"Max", max, nil}
}
// Q1 returns the lower quartile (25%) of the elements in a dataset.
// This does not include the median during calculation.
func Q1(dataset []interface{}) StatsResult {
data, err := interface2F64Slice(dataset)
if err != nil {
return StatsResult{"Q1", math.NaN(), err}
}
sort.Float64s(data)
if len(data)%2 == 0 {
lower := data[:len(data)/2]
q1, err := median(lower)
if err != nil {
return StatsResult{"Q1", math.NaN(), err}
}
return StatsResult{"Q1", q1, nil}
} else {
lower := data[:(len(data)-1)/2]
q1, err := median(lower)
if err != nil {
return StatsResult{"Q1", math.NaN(), err}
}
return StatsResult{"Q1", q1, nil}
}
}
// Q2 returns the middle quartile (50%) of the elements in a dataset.
// This accomplishes the same thing as Median.
func Q2(dataset []interface{}) StatsResult {
q2Result := Median(dataset)
if q2Result.Err != nil {
return StatsResult{"Q2", math.NaN(), q2Result.Err}
}
return StatsResult{"Q2", q2Result.Result, nil}
}
// Q3 returns the upper quartile (75%) of the elements in a dataset.
// This does not include the median during calculation.
func Q3(dataset []interface{}) StatsResult {
data, err := interface2F64Slice(dataset)
if err != nil {
return StatsResult{"Q3", math.NaN(), err}
}
sort.Float64s(data)
if len(data)%2 == 0 {
upper := data[len(data)/2:]
q3, err := median(upper)
if err != nil {
return StatsResult{"Q3", math.NaN(), err}
}
return StatsResult{"Q3", q3, nil}
} else {
upper := data[(len(data)+1)/2:]
q3, err := median(upper)
if err != nil {
return StatsResult{"Q3", math.NaN(), err}
}
return StatsResult{"Q3", q3, nil}
}
}