forked from gregversteeg/bio_corex
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vis_corex.py
790 lines (703 loc) · 36.3 KB
/
vis_corex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
""" This module implements some visualizations based on CorEx representations.
"""
import os
from itertools import combinations
import numpy as np
from numpy import ma
import matplotlib
matplotlib.use('Agg')
import pylab
import networkx as nx
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
from scipy.special import logsumexp
import json
def vis_rep(corex, data=None, row_label=None, column_label=None, prefix='corex_output', focus='', topk=5):
"""Various visualizations and summary statistics for a one layer representation"""
if column_label is None:
column_label = list(map(str, range(data.shape[1])))
if row_label is None:
row_label = list(map(str, range(corex.n_samples)))
alpha = corex.alpha[:, :, 0]
print('Groups in sorted_groups.txt')
output_groups(corex.tcs, alpha, corex.mis, column_label, prefix=prefix)
output_labels(corex.labels, row_label, prefix=prefix)
output_strong(corex.tcs, alpha, corex.mis, corex.labels, prefix=prefix)
anomalies(corex.log_z, row_label=row_label, prefix=prefix)
plot_convergence(corex.tc_history, prefix=prefix)
if data is not None:
print('Pairwise plots among high TC variables in "relationships"')
data_to_plot = np.where(data == corex.missing_values, np.nan, data)
log_p_y_given_x = calculate_log_latent(corex, data)
cont = cont3(log_p_y_given_x)
output_cont_labels(log_p_y_given_x, row_label, prefix=prefix)
plot_heatmaps(data_to_plot, corex.labels, alpha, corex.mis, column_label, cont, prefix=prefix, focus=focus)
plot_pairplots(data_to_plot, corex.labels, alpha, corex.mis, column_label, prefix=prefix, focus=focus, topk=topk)
plot_top_relationships(data_to_plot, corex.labels, alpha, corex.mis, column_label, cont, prefix=prefix, topk=topk)
# plot_top_relationships(data_to_plot, corex.labels, alpha, mis, column_label, corex.log_z[:,:,0].T, prefix=prefix+'anomaly_')
def vis_hierarchy(corexes, row_label=None, column_label=None, max_edges=100, prefix=''):
"""Visualize a hierarchy of representations."""
if column_label is None:
column_label = list(map(str, range(corexes[0].alpha.shape[1])))
if row_label is None:
row_label = list(map(str, range(corexes[0].labels.shape[0])))
f = safe_open(prefix + '/text_files/higher_layer_group_tcs.txt', 'w+')
params = ['dim_hidden', 'eps', 'marginal_description', 'max_iter', 'max_samples', 'missing_values', 'n_cpu',
'n_hidden', 'n_repeat', 'n_samples', 'n_visible', 'ram', 'smooth_marginals']
parameter_dict = {}
for j, corex in enumerate(corexes):
parameter_dict[j] = {}
for param in params:
parameter_dict[j][param] = getattr(corex, param, None)
f.write('At layer: %d, Total TC: %0.3f\n' % (j, corex.tc))
f.write('Individual TCS:' + str(corex.tcs) + '\n')
plot_convergence(corex.tc_history, prefix=prefix, prefix2=j)
g = safe_open('{}/text_files/mis_layer{}.csv'.format(prefix, j), 'w+')
h = safe_open('{}/text_files/weights_layer{}.csv'.format(prefix, j), 'w+')
if j == 0:
g.write('factor,' + ','.join(column_label) + '\n')
h.write('factor,' + ','.join(column_label) + '\n')
else:
g.write('factor,'+ ','.join(map(str, list(range(len(corex.mis[0,:]))))) + '\n')
h.write('factor,'+ ','.join(map(str, list(range(len(corex.mis[0,:]))))) + '\n')
mis = corex.mis / np.log(2)
alpha = corex.alpha
for ir, r in enumerate(mis):
g.write(str(ir) + ',' + ','.join(map(str, mis[ir])) + '\n')
h.write(str(ir) + ',' + ','.join(map(str, mis[ir] * alpha[ir].ravel())) + '\n')
g.close()
h.close()
f.close()
with open('{}/text_files/parameters.json'.format(prefix), 'w') as fp:
json.dump(parameter_dict, fp)
import textwrap
column_label = list(map(lambda q: '\n'.join(textwrap.wrap(q, width=17, break_long_words=False)), column_label))
# Construct non-tree graph
weights = [corex.alpha[:, :, 0].clip(0, 1) * corex.mis for corex in corexes]
node_weights = [corex.tcs for corex in corexes]
g = make_graph(weights, node_weights, column_label, max_edges=max_edges)
# Display pruned version
h = g.copy() # trim(g.copy(), max_parents=max_parents, max_children=max_children)
edge2pdf(h, prefix + '/graphs/graph_prune_' + str(max_edges), labels='label', directed=True, makepdf=True)
# Display tree version
tree = g.copy()
tree = trim(tree, max_parents=1, max_children=False)
edge2pdf(tree, prefix + '/graphs/tree', labels='label', directed=True, makepdf=True)
return g
def plot_heatmaps(data, labels, alpha, mis, column_label, cont, topk=20, prefix='', focus=''):
cmap = sns.cubehelix_palette(as_cmap=True, light=.9)
m, nv = mis.shape
for j in range(m):
inds = np.where(np.logical_and(alpha[j] > 0, mis[j] > 0.))[0]
inds = inds[np.argsort(- alpha[j, inds] * mis[j, inds])][:topk]
if focus in column_label:
ifocus = column_label.index(focus)
if not ifocus in inds:
inds = np.insert(inds, 0, ifocus)
if len(inds) >= 2:
plt.clf()
order = np.argsort(cont[:,j])
subdata = data[:, inds][order].T
subdata -= np.nanmean(subdata, axis=1, keepdims=True)
subdata /= np.nanstd(subdata, axis=1, keepdims=True)
columns = [column_label[i] for i in inds]
sns.heatmap(subdata, vmin=-3, vmax=3, cmap=cmap, yticklabels=columns, xticklabels=False, mask=np.isnan(subdata))
filename = '{}/heatmaps/group_num={}.png'.format(prefix, j)
if not os.path.exists(os.path.dirname(filename)):
os.makedirs(os.path.dirname(filename))
plt.title("Latent factor {}".format(j))
plt.savefig(filename, bbox_inches='tight')
plt.close('all')
#plot_rels(data[:, inds], list(map(lambda q: column_label[q], inds)), colors=cont[:, j],
# outfile=prefix + '/relationships/group_num=' + str(j), latent=labels[:, j], alpha=0.1)
def plot_pairplots(data, labels, alpha, mis, column_label, topk=5, prefix='', focus=''):
cmap = sns.cubehelix_palette(as_cmap=True, light=.9)
plt.rcParams.update({'font.size': 32})
m, nv = mis.shape
for j in range(m):
inds = np.where(np.logical_and(alpha[j] > 0, mis[j] > 0.))[0]
inds = inds[np.argsort(- alpha[j, inds] * mis[j, inds])][:topk]
if focus in column_label:
ifocus = column_label.index(focus)
if not ifocus in inds:
inds = np.insert(inds, 0, ifocus)
if len(inds) >= 2:
plt.clf()
subdata = data[:, inds]
columns = [column_label[i] for i in inds]
subdata = pd.DataFrame(data=subdata, columns=columns)
try:
sns.pairplot(subdata, kind="reg", diag_kind="kde", height=5, dropna=True)
filename = '{}/pairplots_regress/group_num={}.pdf'.format(prefix, j)
if not os.path.exists(os.path.dirname(filename)):
os.makedirs(os.path.dirname(filename))
plt.suptitle("Latent factor {}".format(j), y=1.01)
plt.savefig(filename, bbox_inches='tight')
plt.clf()
except:
pass
subdata['Latent factor'] = labels[:,j]
try:
sns.pairplot(subdata, kind="scatter", dropna=True, vars=subdata.columns.drop('Latent factor'), hue="Latent factor", diag_kind="kde", height=5)
filename = '{}/pairplots/group_num={}.pdf'.format(prefix, j)
if not os.path.exists(os.path.dirname(filename)):
os.makedirs(os.path.dirname(filename))
plt.suptitle("Latent factor {}".format(j), y=1.01)
plt.savefig(filename, bbox_inches='tight')
plt.close('all')
except:
pass
def make_graph(weights, node_weights, column_label, max_edges=100):
all_edges = np.hstack(list(map(np.ravel, weights)))
max_edges = min(max_edges, len(all_edges))
w_thresh = np.sort(all_edges)[-max_edges]
print('weight threshold is %f for graph with max of %f edges ' % (w_thresh, max_edges))
g = nx.DiGraph()
max_node_weight = max([max(w) for w in node_weights])
for layer, weight in enumerate(weights):
m, n = weight.shape
for j in range(m):
g.add_node((layer + 1, j))
g._node[(layer + 1, j)]['weight'] = 0.3 * node_weights[layer][j] / max_node_weight
for i in range(n):
if weight[j, i] > w_thresh:
if weight[j, i] > w_thresh / 2:
g.add_weighted_edges_from([( (layer, i), (layer + 1, j), 10 * weight[j, i])])
else:
g.add_weighted_edges_from([( (layer, i), (layer + 1, j), 0)])
# Label layer 0
for i, lab in enumerate(column_label):
g.add_node((0, i))
g._node[(0, i)]['label'] = lab
g._node[(0, i)]['name'] = lab # JSON uses this field
g._node[(0, i)]['weight'] = 1
return g
def trim(g, max_parents=False, max_children=False):
if float(nx.__version__) < 2:
edgedict = g.edge
else:
edgedict = g.adj
for node in g:
if max_parents:
parents = list(g.successors(node))
weights = [edgedict[node][parent]['weight'] for parent in parents]
for weak_parent in np.argsort(weights)[:-max_parents]:
g.remove_edge(node, parents[weak_parent])
if max_children:
children = g.predecessors(node)
weights = [edgedict[child][node]['weight'] for child in children]
for weak_child in np.argsort(weights)[:-max_children]:
g.remove_edge(children[weak_child], node)
return g
def output_groups(tcs, alpha, mis, column_label, thresh=0, prefix=''):
f = safe_open(prefix + '/text_files/groups.txt', 'w+')
g = safe_open(prefix + '/text_files/groups_no_overlaps.txt', 'w+')
m, nv = mis.shape
for j in range(m):
f.write('Group num: %d, TC(X;Y_j): %0.3f\n' % (j, tcs[j]))
g.write('Group num: %d, TC(X;Y_j): %0.3f\n' % (j, tcs[j]))
inds = np.where(alpha[j] * mis[j] > thresh)[0]
inds = inds[np.argsort(-alpha[j, inds] * mis[j, inds])]
for ind in inds:
f.write(column_label[ind] + ', %0.3f, %0.3f, %0.3f\n' % (
mis[j, ind], alpha[j, ind], mis[j, ind] * alpha[j, ind]))
inds = np.where(alpha[j] == 1)[0]
inds = inds[np.argsort(- mis[j, inds])]
for ind in inds:
g.write(column_label[ind] + ', %0.3f\n' % mis[j, ind])
f.close()
g.close()
def output_labels(labels, row_label, prefix=''):
f = safe_open(prefix + '/text_files/labels.txt', 'w+')
ns, m = labels.shape
for l in range(ns):
f.write(row_label[l] + ',' + ','.join(map(str, labels[l, :])) + '\n')
f.close()
def output_cont_labels(log_p_y_given_x, row_label, prefix=''):
f = safe_open(prefix + '/text_files/cont_labels.txt', 'w+')
m, ns, k = log_p_y_given_x.shape
# assert k==2, 'More complicated if k>2... use cont3_test to generate if k==3'
labels = cont3(log_p_y_given_x)
for l in range(ns):
f.write(row_label[l] + ',' + ','.join(map(lambda q: '%0.6f' % q, labels[l, :])) + '\n')
f.close()
def output_strong(tcs, alpha, mis, labels, prefix=''):
f = safe_open(prefix + '/text_files/most_deterministic_groups.txt', 'w+')
m, n = alpha.shape
topk = 5
ixy = np.clip(np.sum(alpha * mis, axis=1) - tcs, 0, np.inf)
hys = np.array([entropy(labels[:, j]) for j in range(m)]).clip(1e-6)
ntcs = [(np.sum(np.sort(alpha[j] * mis[j])[-topk:]) - ixy[j]) / ((topk - 1) * hys[j]) for j in range(m)]
f.write('Group num., NTC\n')
for j, ntc in sorted(enumerate(ntcs), key=lambda q: -q[1]):
f.write('%d, %0.3f\n' % (j, ntc))
f.close()
def plot_top_relationships(data, labels, alpha, mis, column_label, cont, topk=5, athresh=0.2, prefix=''):
m, nv = mis.shape
for j in range(m):
# inds = np.where(alpha[j] * mis[j] > 0)[0]
#inds = inds[np.argsort(-alpha[j, inds] * mis[j, inds])][:topk]
inds = np.where(alpha[j] > athresh)[0]
inds = inds[np.argsort(- alpha[j, inds] * mis[j, inds])][:topk]
if len(inds) >= 2:
plot_rels(data[:, inds], list(map(lambda q: column_label[q], inds)), colors=cont[:, j],
outfile=prefix + '/relationships/group_num=' + str(j), latent=labels[:, j], alpha=0.1)
def anomalies(log_z, row_label=None, prefix=''):
from scipy.special import erf
ns = log_z.shape[1]
if row_label is None:
row_label = list(map(str, range(ns)))
a_score = np.sum(log_z[:, :, 0], axis=0)
mean, std = np.mean(a_score), np.std(a_score)
a_score = (a_score - mean) / std
percentile = 1. / ns
anomalies = np.where(0.5 * (1 - erf(a_score / np.sqrt(2)) ) < percentile)[0]
f = safe_open(prefix + '/text_files/anomalies.txt', 'w+')
for i in anomalies:
f.write(row_label[i] + ', %0.1f\n' % a_score[i])
f.close()
def compact(data, fraction=0.5, missing_values=-1e6):
# Return indices and data matrix only for rows with at least 50% of the columns non-empty
ns, nv = data.shape
inds = np.sum(data == missing_values, axis=1) < fraction * nv
return inds, data[inds]
# Utilities
# IT UTILITIES
def entropy(xsamples):
# sample entropy for one discrete var
xsamples = np.asarray(xsamples)
xsamples = xsamples[xsamples >= 0] # by def, -1 means missing value
xs = np.unique(xsamples)
ns = len(xsamples)
ps = np.array([float(np.count_nonzero(xsamples == x)) / ns for x in xs])
return -np.sum(ps * np.log(ps))
def safe_open(filename, mode):
if not os.path.exists(os.path.dirname(filename)):
os.makedirs(os.path.dirname(filename))
return open(filename, mode)
# Visualization utilities
def neato(fname, position=None, directed=False):
if directed:
os.system(
"sfdp " + fname + ".dot -Tpdf -Earrowhead=none -Nfontsize=12 -GK=2 -Gmaxiter=1000 -Goverlap=False -Gpack=True -Gpackmode=clust -Gsep=0.01 -Gsplines=False -o " + fname + "_sfdp.pdf")
os.system(
"sfdp " + fname + ".dot -Tpdf -Earrowhead=none -Nfontsize=12 -GK=2 -Gmaxiter=1000 -Goverlap=False -Gpack=True -Gpackmode=clust -Gsep=0.01 -Gsplines=True -o " + fname + "_sfdp_w_splines.pdf")
return True
if position is None:
os.system("neato " + fname + ".dot -Tpdf -o " + fname + ".pdf")
os.system("fdp " + fname + ".dot -Tpdf -o " + fname + "fdp.pdf")
else:
os.system("neato " + fname + ".dot -Tpdf -n -o " + fname + ".pdf")
return True
def extract_color(label):
colors = 'indigo,gold,hotpink,firebrick,indianred,yellow,mistyrose,darkolivegreen,darkseagreen,pink,tomato,lightcoral,orangered,navajowhite,palegreen,darkslategrey,greenyellow,burlywood,seashell,mediumspringgreen,papayawhip,blanchedalmond,chartreuse,dimgray,black,peachpuff,springgreen,aquamarine,white,orange,lightsalmon,darkslategray,brown,ivory,dodgerblue,peru,lawngreen,chocolate,crimson,forestgreen,slateblue,lightseagreen,cyan,mintcream,antiquewhite,mediumorchid,skyblue,gray,darkturquoise,goldenrod,darkgreen,floralwhite,darkviolet,moccasin,saddlebrown,grey,darkslateblue,lightskyblue,lightpink,mediumvioletred,slategrey,red,deeppink,limegreen,palegoldenrod,plum,turquoise,lightgrey,lightgoldenrodyellow,darkgoldenrod,lavender,maroon,yellowgreen,sandybrown,thistle,violet,navy,magenta,dimgrey,tan,rosybrown,blue,lightblue,ghostwhite,honeydew,cornflowerblue,linen,powderblue,seagreen,darkkhaki,snow,sienna,mediumblue,royalblue,lightcyan,green,mediumpurple,midnightblue,cornsilk,paleturquoise,bisque,slategray,khaki,wheat,darkorchid,deepskyblue,salmon,steelblue,palevioletred,lightslategray,aliceblue,lightslategrey,orchid,gainsboro,mediumseagreen,lightgray,mediumturquoise,lemonchiffon,cadetblue,lightyellow,lavenderblush,coral,purple,whitesmoke,mediumslateblue,darkorange,mediumaquamarine,darksalmon,beige,blueviolet,azure,lightsteelblue,oldlace'.split(',')
parts = label.split('_')
for part in parts:
if part in colors:
parts.remove(part)
return '_'.join(parts), part
return label, 'black'
def edge2pdf(g, filename, threshold=0, position=None, labels=None, connected=True, directed=False, makepdf=True):
#This function will takes list of edges and a filename
#and write a file in .dot format. Readable, eg. by omnigraffle
# OR use "neato file.dot -Tpng -n -o file.png"
# The -n option says whether to use included node positions or to generate new ones
# for a grid, positions = [(i%28,i/28) for i in range(784)]
def cnn(node):
#change node names for dot format
if type(node) is tuple or type(node) is list:
return u'n' + u'_'.join(map(str, node))
else:
return str(node)
if connected:
touching = list(set(sum([[a, b] for a, b in g.edges()], [])))
g = nx.subgraph(g, touching)
print('non-isolated nodes,edges', len(list(g.nodes())), len(list(g.edges())))
f = safe_open(filename + '.dot', 'wb+')
if directed:
f.write("strict digraph {\n".encode('utf-8'))
else:
f.write("strict graph {\n".encode('utf-8'))
#f.write("\tgraph [overlap=scale];\n".encode('utf-8'))
f.write("\tnode [shape=point];\n".encode('utf-8'))
for a, b, d in g.edges(data=True):
if 'weight' in d:
if directed:
f.write(("\t" + cnn(a) + ' -> ' + cnn(b) + ' [penwidth=%.2f' % float(
np.clip(d['weight'], 0, 9)) + '];\n').encode('utf-8'))
else:
if d['weight'] > threshold:
f.write(("\t" + cnn(a) + ' -- ' + cnn(b) + ' [penwidth=' + str(3 * d['weight']) + '];\n').encode(
'utf-8'))
else:
if directed:
f.write(("\t" + cnn(a) + ' -> ' + cnn(b) + ';\n').encode('utf-8'))
else:
f.write(("\t" + cnn(a) + ' -- ' + cnn(b) + ';\n').encode('utf-8'))
for n in g.nodes():
if labels is not None:
if type(labels) == dict or type(labels) == list:
thislabel = labels[n].replace(u'"', u'\\"')
lstring = u'label="' + thislabel + u'",shape=none'
elif type(labels) == str:
if 'label' in g._node[n]:
thislabel = g._node[n][labels].replace(u'"', u'\\"')
# combine dupes
#llist = thislabel.split(',')
#thislabel = ','.join([l for l in set(llist)])
thislabel, thiscolor = extract_color(thislabel)
lstring = u'label="%s",shape=none,fontcolor="%s"' % (thislabel, thiscolor)
else:
weight = g._node[n].get('weight', 0.1)
if n[0] == 1:
lstring = u'shape=circle,margin="0,0",style=filled,fillcolor=black,fontcolor=white,height=%0.2f,label="%d"' % (
2 * weight, n[1])
else:
lstring = u'shape=point,height=%0.2f' % weight
else:
lstring = 'label="' + str(n) + '",shape=none'
#lstring = unicode(lstring)
else:
lstring = False
if position is not None:
if position == 'grid':
position = [(i % 28, 28 - i / 28) for i in range(784)]
posstring = 'pos="' + str(position[n][0]) + ',' + str(position[n][1]) + '"'
else:
posstring = False
finalstring = u' [' + u','.join([ts for ts in [posstring, lstring] if ts]) + u']\n'
#finalstring = u' ['+lstring+u']\n'
f.write((u'\t' + cnn(n) + finalstring).encode('utf-8'))
f.write("}".encode('utf-8'))
f.close()
if makepdf:
neato(filename, position=position, directed=directed)
return True
def predictable(out, data, wdict=None, topk=5, outfile='sorted_groups.txt', graphs=False, prefix='', athresh=0.5,
tvalue=0.1):
alpha, labels, lpygx, mis, lasttc = out[:5]
ns, m = labels.shape
m, nv = mis.shape
hys = [entropy(labels[:, j]) for j in range(m)]
#alpha = np.array([z[2] for z in zs]) # m by nv
nmis = []
ixys = []
for j in range(m):
if hys[j] > 0:
#ixy = np.dot((alpha[j]>0.95).astype(int),mis[j])-lasttc[-1][j]
ixy = max(0., np.dot(alpha[j], mis[j]) - lasttc[-1][j])
ixys.append(ixy)
tcn = (np.sum(np.sort(alpha[j] * mis[j])[-topk:]) - ixy) / ((topk - 1) * hys[j])
nmis.append(tcn) #ixy) #/hys[j])
else:
ixys.append(0)
nmis.append(0)
f = safe_open(prefix + outfile, 'w+')
print(list(enumerate(np.argsort(-np.array(nmis)))))
print(','.join(map(str, list(np.argsort(-np.array(nmis))))))
for i, top in enumerate(np.argsort(-np.array(nmis))):
f.write('Group num: %d, Score: %0.3f\n' % (top, nmis[top]))
inds = np.where(alpha[top] > athresh)[0]
inds = inds[np.argsort(-mis[top, inds])]
for ind in inds:
f.write(wdict[ind] + ', %0.3f\n' % (mis[top, ind] / np.log(2)))
if wdict:
print(','.join(map(lambda q: wdict[q], inds)))
print(','.join(map(str, inds)))
print(top)
print(nmis[top], ixys[top], hys[top], ixys[top] / hys[top])
#,lasttc[-1][top],hys[top],lasttc[-1][top]/hys[top]
if graphs:
print(inds)
if len(inds) >= 2:
plot_rels(data[:, inds[:5]], list(map(lambda q: wdict[q], inds[:5])),
outfile='relationships/' + str(i) + '_group_num=' + str(top), latent=out[1][:, top],
alpha=tvalue)
f.close()
return nmis
def shorten(s, n=12):
s, _ = extract_color(s)
if len(s) > 2 * n:
return s[:n] + '..' + s[-n:]
return s
def plot_convergence(tc_history, prefix='', prefix2=''):
pylab.plot(tc_history)
pylab.xlabel('# iterations')
filename = '{}/text_files/convergence{}.pdf'.format(prefix, prefix2)
if not os.path.exists(os.path.dirname(filename)):
os.makedirs(os.path.dirname(filename))
pylab.savefig(filename)
pylab.close('all')
return True
def plot_rels(data, labels=None, colors=None, outfile="rels", latent=None, alpha=0.8):
ns, n = data.shape
if labels is None:
labels = list(map(str, range(n)))
ncol = 5
# ncol = 4
nrow = int(np.ceil(float(n * (n - 1) / 2) / ncol))
#nrow=1
#pylab.rcParams.update({'figure.autolayout': True})
fig, axs = pylab.subplots(nrow, ncol)
fig.set_size_inches(5 * ncol, 5 * nrow)
#fig.set_canvas(pylab.gcf().canvas)
pairs = list(combinations(range(n), 2)) #[:4]
pairs = sorted(pairs, key=lambda q: q[0]**2+q[1]**2) # Puts stronger relationships first
if colors is not None:
colors = (colors - np.min(colors)) / (np.max(colors) - np.min(colors)).clip(1e-7)
for ax, pair in zip(axs.flat, pairs):
if latent is None:
ax.scatter(data[:, pair[0]], data[:, pair[1]], marker='.', edgecolors='none', alpha=alpha)
else:
# cs = 'rgbcmykrgbcmyk'
markers = 'x+.o,<>^^<>,+x.'
for j, ind in enumerate(np.unique(latent)):
inds = (latent == ind)
ax.scatter(data[inds, pair[0]], data[inds, pair[1]], c=colors[inds], cmap=pylab.get_cmap("jet"),
marker=markers[j], alpha=0.5, edgecolors='none', vmin=0, vmax=1)
ax.set_xlabel(shorten(labels[pair[0]]))
ax.set_ylabel(shorten(labels[pair[1]]))
for ax in axs.flat[axs.size - 1:len(pairs) - 1:-1]:
ax.scatter(data[:, 0], data[:, 1], marker='.')
pylab.rcParams['font.size'] = 12 #6
pylab.draw()
#fig.set_tight_layout(True)
fig.tight_layout()
for ax in axs.flat[axs.size - 1:len(pairs) - 1:-1]:
ax.set_visible(False)
filename = outfile + '.png'
if not os.path.exists(os.path.dirname(filename)):
os.makedirs(os.path.dirname(filename))
fig.savefig(outfile + '.png') #df')
pylab.close('all')
return True
def cont3(log_p_y_given_x):
"""
Returns an ordering for points in a simplex (using manifold learning methods).
This is used for shading points in relationships/ plots.
"""
nv, ns, k = log_p_y_given_x.shape
p_y_given_x = np.exp(log_p_y_given_x)
allcont = []
if k == 3:
for j in range(nv):
ends = sorted([(np.dot(p_y_given_x[j, :, end[0]], p_y_given_x[j, :, end[1]]), end) for end in
[(0, 1), (0, 2), (1, 2)]])[0][1]
cont = log_p_y_given_x[j, :, ends[0]] - log_p_y_given_x[j, :, ends[1]]
cont = np.where(np.isnan(cont), 0, cont)
allcont.append(cont)
out = np.array(allcont).T # Bounds approximately reflect log of float precision
top = np.max(np.abs(np.where(np.isinf(out), 0, out)))
out = np.clip(out, -top, top)
elif k == 2:
for j in range(nv):
Y = p_y_given_x[j, :, 0] #np.log(p_y_given_x[j,:,0].clip(1e-40))
allcont.append(Y)
out = np.array(allcont).T
else:
print('error, not able to visualize with k > 3')
return out
def cont3_test(p_y_given_x, p_test, logp=False):
"""
What if we need the same continuous representation for test data? If k==3,(or above) we have to make sure we
do the same transformation as the reference data.
"""
nv, ns, k = p_y_given_x.shape
allcont = []
assert k==3
for j in range(nv):
ends = sorted([(np.dot(p_y_given_x[j, :, end[0]], p_y_given_x[j, :, end[1]]), end) for end in
[(0, 1), (0, 2), (1, 2)]])[0][1]
if logp:
cont = p_test[j, :, ends[0]] - p_test[j, :, ends[1]]
else:
cont = np.log(p_test[j, :, ends[0]]) - np.log(p_test[j, :, ends[1]])
cont = np.where(np.isnan(cont), 0, cont)
allcont.append(cont)
out = np.array(allcont).T # Bounds approximately reflect log of float precision
top = np.max(np.abs(np.where(np.isinf(out), 0, out)))
out = np.clip(out, -top, top)
return out
def calculate_log_latent(corex, X):
""""Calculate the log probabilities for hidden factors for each sample, with high precision."""
Xm = ma.masked_equal(X, corex.missing_values)
n_samples, n_visible = Xm.shape
n_hidden, dim_hidden, ram = corex.n_hidden, corex.dim_hidden, corex.ram
log_p_y_given_x_unnorm = np.empty((n_hidden, n_samples, dim_hidden))
memory_size = float(n_samples * n_visible * n_hidden * dim_hidden * 64) / 1000**3 # GB
batch_size = np.clip(int(ram * n_samples / memory_size), 1, n_samples)
for l in range(0, n_samples, batch_size):
log_marg_x = corex.calculate_marginals_on_samples(corex.theta, Xm[l:l+batch_size]) # LLRs for each sample, for each var.
log_p_y_given_x_unnorm[:, l:l+batch_size, :] = corex.log_p_y + np.einsum('ikl,ijkl->ijl', corex.alpha, log_marg_x, optimize=False)
return normalize_latent(log_p_y_given_x_unnorm, n_hidden)
def normalize_latent(log_p_y_given_x_unnorm, n_hidden):
"""We need to normalize log p(y|x) with high precision... This is a hack to recalculate those since
they are not provided in corex.py.
"""
log_z = logsumexp(log_p_y_given_x_unnorm, axis=2) # Essential to maintain precision.
log_z = log_z.reshape((n_hidden, -1, 1))
return log_p_y_given_x_unnorm - log_z
if __name__ == '__main__':
# Command line interface
# Sample commands:
# python vis_corex.py data/test_data.csv
# python vis_corex.py tests/data/test_big5.csv --layers=5,1 -v --no_row_names -o big5
import corex as ce
import csv
import sys, traceback
from time import time
from optparse import OptionParser, OptionGroup
parser = OptionParser(usage="usage: %prog [options] data_file.csv \n"
"It is assumed that the first row and first column of the data CSV file are labels.\n"
"Use options to indicate otherwise.")
group = OptionGroup(parser, "Input Data Format Options")
group.add_option("-c", "--continuous",
action="store_true", dest="continuous", default=False,
help="Input variables are continuous (default assumption is that they are discrete).")
group.add_option("-t", "--no_column_names",
action="store_true", dest="nc", default=False,
help="We assume the top row is variable names for each column. "
"This flag says that data starts on the first row and gives a "
"default numbering scheme to the variables (1,2,3...).")
group.add_option("-f", "--no_row_names",
action="store_true", dest="nr", default=False,
help="We assume the first column is a label or index for each sample. "
"This flag says that data starts on the first column.")
group.add_option("-m", "--missing",
action="store", dest="missing", type="float", default=-1e6,
help="Treat this value as missing data. Default is -1e6.")
group.add_option("-d", "--delimiter",
action="store", dest="delimiter", type="string", default=",",
help="Separator between entries in the data, default is ','.")
parser.add_option_group(group)
group = OptionGroup(parser, "CorEx Options")
group.add_option("-l", "--layers", dest="layers", type="string", default="2,1",
help="Specify number of units at each layer: 5,3,1 has "
"5 units at layer 1, 3 at layer 2, and 1 at layer 3")
group.add_option("-k", "--dim_hidden", dest="dim_hidden", type="int", default=2,
help="Latent factors take values 0, 1..k. Default k=2")
group.add_option("-b", "--bayesian_smoothing",
action="store_true", dest="smooth", default=False,
help="Turn on Bayesian smoothing when estimating marginal distributions (p(x_i|y_j)). "
"Slower, but reduces appearance of spurious correlations if the number of "
"samples is < 200 or if dim_hidden is large.")
group.add_option("-r", "--repeat",
action="store", dest="repeat", type="int", default=1,
help="Run r times and return solution with best TC.")
parser.add_option_group(group)
group = OptionGroup(parser, "Output Options")
group.add_option("-o", "--output",
action="store", dest="output", type="string", default="corex_output",
help="A directory to put all output files.")
group.add_option("-v", "--verbose",
action="store_true", dest="verbose", default=False,
help="Print rich outputs while running.")
group.add_option("-e", "--edges",
action="store", dest="max_edges", type="int", default=100,
help="Show at most this many edges in graphs.")
group.add_option("-q", "--regraph",
action="store_true", dest="regraph", default=False,
help="Don't re-run corex, just re-generate outputs (perhaps with edges option changed).")
group.add_option("-F", "--focus",
action="store", dest="focus", type="string", default="",
help="A special variable to focus on in plots.")
group.add_option("-T", "--topk",
action="store", dest="topk", type=int, default=5,
help="How many variables to look at in pairplots.")
parser.add_option_group(group)
group = OptionGroup(parser, "Computational Options")
group.add_option("-a", "--ram",
action="store", dest="ram", type="float", default=8.,
help="Approximate amount of RAM to use (in GB).")
group.add_option("-p", "--cpu",
action="store", dest="cpu", type="int", default=1,
help="Number of cpus/cores to use.")
group.add_option("-w", "--max_iter",
action="store", dest="max_iter", type="int", default=100,
help="Max number of iterations to use.")
parser.add_option_group(group)
(options, args) = parser.parse_args()
if not len(args) == 1:
print("Run with '-h' option for usage help.")
sys.exit()
np.set_printoptions(precision=3, suppress=True) # For legible output from numpy
layers = list(map(int, options.layers.split(',')))
if layers[-1] != 1:
layers.append(1) # Last layer has one unit for convenience so that graph is fully connected.
verbose = options.verbose
def fill_empty(z):
if z=='':
return str(options.missing)
else:
return z
#Load data from csv file
filename = args[0]
with open(filename, 'rU') as csvfile:
reader = csv.reader(csvfile, delimiter=options.delimiter)
if options.nc:
variable_names = None
else:
variable_names = next(reader)[(1 - options.nr):]
sample_names = []
data = []
for row in reader:
if options.nr:
sample_names = None
else:
sample_names.append(row[0])
tmp = list(map(fill_empty, row[(1 - options.nr):]))
data.append(tmp)
try:
if options.continuous:
X = np.array(data, dtype=float) # Data matrix in numpy format
marg = 'gaussian'
else:
X = np.array(data, dtype=int) # Data matrix in numpy format
marg = 'discrete'
except:
print("Incorrect data format.\nCheck that you've correctly specified options " \
"such as continuous or not, \nand if there is a header row or column.\n" \
"Also, missing values should be specified with a numeric value (-1 by default).\n" \
"Run 'python vis_corex.py -h' option for help with options.")
traceback.print_exc(file=sys.stdout)
sys.exit()
if verbose:
print('\nData summary: X has %d rows and %d columns' % X.shape)
if variable_names:
print('Variable names are: ' + ','.join(map(str, list(enumerate(variable_names)))))
# Run CorEx on data
if verbose:
print('Getting CorEx results')
corexes = []
if not options.regraph:
for l, layer in enumerate(layers):
if verbose:
print("Layer ", l)
if l == 0:
t0 = time()
corexes = [ce.Corex(n_hidden=layer, dim_hidden=options.dim_hidden,
verbose=verbose, marginal_description=marg,
smooth_marginals=options.smooth,
missing_values=options.missing, n_repeat=options.repeat, max_iter=options.max_iter,
n_cpu=options.cpu, ram=options.ram).fit(X)]
print('Time for first layer: %0.2f' % (time() - t0))
else:
X_prev = corexes[-1].labels
corexes.append(ce.Corex(n_hidden=layer, dim_hidden=options.dim_hidden,
verbose=verbose, marginal_description='discrete',
smooth_marginals=options.smooth,
n_repeat=options.repeat,
n_cpu=options.cpu, ram=options.ram).fit(X_prev))
for l, corex in enumerate(corexes):
# The learned model can be loaded again using ce.Corex().load(filename)
print('TC at layer %d is: %0.3f' % (l, corex.tc))
corex.save(options.output + '/layer_' + str(l) + '.dat')
else:
corexes = [ce.Corex().load(options.output + '/layer_' + str(l) + '.dat') for l in range(len(layers))]
# This line outputs plots showing relationships at the first layer
vis_rep(corexes[0], X, row_label=sample_names, column_label=variable_names, prefix=options.output, focus=options.focus, topk=options.topk)
# This line outputs a hierarchical networks structure in a .dot file in the "graphs" folder
# And it tries to compile the dot file into a pdf using the command line utility sfdp (part of graphviz)
vis_hierarchy(corexes, row_label=sample_names, column_label=variable_names, max_edges=options.max_edges,
prefix=options.output)