-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexec-bigclonebench.py
95 lines (82 loc) · 3.56 KB
/
exec-bigclonebench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# -*- coding: utf-8 -*-
"""
[Martinez-Gil2024b] Advanced Detection of Source Code Clones via an Ensemble of Unsupervised Similarity Measures, arXiv preprint arXiv:2405.02095, 2024
@author: Jorge Martinez-Gil
"""
import json
import asyncio
from concurrent.futures import ThreadPoolExecutor
from tqdm import tqdm
import numpy as np
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from similarity import *
intermediate_file = 'outputs\output-bigclonebench.txt'
def calculate_metrics_for_similarity(df, similarity_column, threshold):
predictions = df[similarity_column].apply(lambda x: 1 if x >= threshold else 0)
accuracy = accuracy_score(df['Truth'], predictions)
precision = precision_score(df['Truth'], predictions, zero_division=0)
recall = recall_score(df['Truth'], predictions, zero_division=0)
f1 = f1_score(df['Truth'], predictions, zero_division=0)
return {
'similarity_metric': similarity_column,
'threshold': threshold,
'accuracy': accuracy,
'precision': precision,
'recall': recall,
'f1_score': f1
}
def append_results_to_file(results):
with open(intermediate_file, 'a') as file:
for result in results:
converted_result = [float(item) if isinstance(item, np.floating) else item for item in result]
file.write(json.dumps(converted_result) + '\n')
def load_json_data(file_path):
idx_to_func = {}
with open(file_path, 'r') as file:
for line in file:
data = json.loads(line)
idx_to_func[data.get("idx")] = data.get("func")
return idx_to_func
async def async_calculate_similarity(executor, method, code1, code2, timeout_duration=20):
loop = asyncio.get_running_loop()
try:
result = await asyncio.wait_for(loop.run_in_executor(executor, method.similarity, code1, code2), timeout_duration)
return result
except asyncio.TimeoutError:
print(f"TimeoutError: {method.__name__} exceeded {timeout_duration} seconds")
return 0
except Exception as e:
print(f"Error: {method.__name__} failed with {e}")
return 0
async def process_function_batch_async(batch):
batch_results = []
similarity_methods = [
ast, bow, codebert, comments,
exe, fcall, fuzz, graph,
hashing, image, jaccard, lcs,
lev, metrics, ngrams, pdg,
rk, semclone, semdiff, tdf,
winn
]
with ThreadPoolExecutor(max_workers=10) as executor:
for code1, code2, truth in batch:
similarities = await asyncio.gather(*(async_calculate_similarity(executor, method, code1, code2) for method in similarity_methods))
batch_results.append(similarities + [truth])
return batch_results
async def main_async():
idx_to_func = load_json_data('datasets\BigCloneBench\data.jsonl')
function_pairs = []
with open(r'datasets\BigCloneBench\test.txt', 'r') as file:
for line in file:
idx1, idx2, truth_value = line.split()
found_func1 = idx_to_func.get(idx1)
found_func2 = idx_to_func.get(idx2)
if found_func1 and found_func2:
function_pairs.append((found_func1, found_func2, int(truth_value)))
batch_size = 32
function_batches = [function_pairs[i:i + batch_size] for i in range(0, len(function_pairs), batch_size)]
for batch in tqdm(function_batches, desc="Processing Batches"):
batch_result = await process_function_batch_async(batch)
append_results_to_file(batch_result)
if __name__ == "__main__":
asyncio.run(main_async())