forked from jeromewang-github/computer_vision
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVLAD.py
176 lines (161 loc) · 7.7 KB
/
VLAD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#!/usr/bin/python3
#encoding=utf-8
'''
Vector of Locally Aggregated Descriptors (VLAD) image encoding is a feature
encoding and pooling method. VLAD is similar to Fisher vectors but (i) it does not store
second-order information about the features and (ii) it typically use KMeans instead of
GMMs to generate the feature vocabulary (although the latter is also an option).
VLAD encodes a set of local feature descriptors I=(x1,…,xn) extracted from an image using a
dictionary built with a clustering method such as Gaussian Mixture Models (GMM)
or K-means clustering. Let qik be the strength of the association of data vector
xi to cluster μk, such that q_{ik}≥0 and \sum_k(q_{ik})=1. The association may be either
soft (e.g. obtained as the posterior probabilities of the GMM clusters) or
hard (e.g. obtained by vector quantization with K-means).
μk are the cluster means, vectors of the same dimension as the data xi. VLAD encodes
feature x by considering the residuals v_k=\sum_{i=1}^N q_{ik}(xi−μk).
The residulas are concatenated together to obtain the vector.
VLAD normalization
VLFeat VLAD implementation supports a number of different normalization strategies.
These are optionally applied in this order:
Component-wise mass normalization. Each vector vk is divided by the total mass of features
associated to it \sum_i q_{ik}.
Square-rooting. The function sign(z)sqrt(|z|)is applied to all scalar components of the VLAD
descriptor.
Component-wise l2 normalization. The vectors vk are divided by their norm ∥v_k∥_2.
Global l2 normalization. The VLAD descriptor Φ^(I) is divided by its norm ∥Φ^(I)∥_2.
Ref. H. Jegou, M. Douze, C. Schmid, and P. Perez. Aggregating local descriptors into
a compact image representation. In Proc. CVPR, 2010.
L. Liu, L. Wang, and X. Liu. In defense of soft-assignment coding.In ICCV, pages 2486–2493, 2011.
@author: jerome
@Constact:yunfeiwang@hust.edu.cn
'''
import numpy as np
from sklearn.cluster import KMeans,MiniBatchKMeans
from sklearn import mixture
from Metric import distEuclidean
def VLADFeatures(dataLearn,dataEncode,nClus,method='kMeans',encode='hard',distfun=distEuclidean,normalize=0):
"""
VLADFeatures(dataLearn,dataEncode,nClus,method='kMeans',encode='hard',distfun=distEuclidean,normalize=0)
@Parameters:
dataLearn: M*N ndarray,each row is a sample.
dataEncode:P*N ndarray,each row is a sample,which is the data to be encoded.
nClus: number of viusual words in the visual word dictinary.
method: string, 'kMeans' or 'GMM',clustering algorithm used to create visual dictionary
encode: hard or soft, used to assign each sample to cluster centers in hard or soft way.
distfun: metric used to compute distance.(distEuclidean or distCosine)
normalize: the normalization method
0-Component-wise mass normalization.
1-Square-rooting.
2-Component-wise l2 normalization.
3-Global l2 normalization.
@Return:
(k*dim,) ndarray, feature encoded in VLAD
"""
#1.Learn visual word dictionary with k-Means or GMM
print("Clustering for visual word dictionary...")
centers=VLADDictionary(dataLearn, nClus, method, distfun)
print('Generating VLAD features...')
vlad=VLADEncoding(dataEncode,centers,encode,distfun,normalize)
return vlad
def VLADDictionary(dataLearn,nClus,method='kMeans',distfun=distEuclidean):
"""
VLADDictionary(dataLearn,nClus,method='kMeans',encode='hard',distfun=distEuclidean)
@Parameters:
dataLearn: M*N ndarray,each row is a sample.
nClus: number of viusual words in the visual word dictinary.
method: string, 'kMeans' or 'GMM',clustering algorithm used to create visual dictionary
encode: hard or soft, used to assign each sample to cluster centers in hard or soft way.
distfun: metric used to compute distance.(distEuclidean or distCosine)
@Return:
(k,dim) ndarray, cluster centers treated as codebook in viusual dictionary
"""
method=str.lower(method)
if method not in ('kmeans','gmm'):
raise ValueError('Invalid clustering method for constructing visual dictionary')
centers=None
if method=='kmeans':
nSmp=dataLearn.shape[0]
if nSmp<3e4:
km=KMeans(n_clusters=nClus,init='k-means++',n_init=3,n_jobs=-1)#use all the cpus
else:
km=MiniBatchKMeans(n_clusters=nClus,init='k-means++',n_init=3)
km.fit(dataLearn)
centers=km.cluster_centers_
else:
gmm=mixture.GMM(n_components=nClus)
gmm.fit(dataLearn)
centers=gmm.means_
return centers
def VLADEncoding(dataEncode,centers,encode='hard',distfun=distEuclidean,normalize=0):
"""
VLADFeatures(dataLearn,dataEncode,nClus,method='kMeans',encode='hard',distfun=distEuclidean,normalize=0)
@Parameters:
dataEncode:P*N ndarray,each row is a sample,which is the data to be encoded.
centers: nClus*nDim ndarray, clustering centers as the coodbook in the visual dictionary
encode: hard or soft, used to assign each sample to cluster centers in hard or soft way.
distfun: metric used to compute distance.(distEuclidean or distCosine)
normalize: the normalization method
0-Component-wise mass normalization.
1-Square-rooting.
2-Component-wise l2 normalization.
3-Global l2 normalization.
@Return:
(k*dim,) ndarray, feature encoded in VLAD
"""
if encode not in('hard','soft'):
raise ValueError('Invalid value for VQ(hard or soft)')
if dataEncode.ndim==1:
dataEncode=dataEncode[:,np.newaxis]
nSmp,nDim=dataEncode.shape
vlad=np.zeros((nClus,nDim))#VLAD descriptors
if encode=='hard':
#2.Vector quantization with hard or soft Assignment
vq=np.zeros(nSmp)
for idx in range(nSmp):
mindist=np.Inf
nn=-1
dist_iter=map(lambda x:distfun(dataEncode[idx],x),centers)
for (cnt,dist) in enumerate(dist_iter):
if dist<mindist:
mindist=dist
nn=cnt
vq[idx]=nn
#3.Accumulate the residuals between descriptors and cluster centers
for i in range(nClus):
idx=vq==i
data_diff=dataEncode[idx]-centers[i]
vlad[i]=np.sum(data_diff,axis=0)
else:#VQ='soft'
#2.Vector quantization with hard or soft Assignment
vq=np.zeros((nSmp,nClus))
for idx in range(nSmp):
vq[idx]=np.array(list(map(lambda x:np.exp(-distfun(dataEncode[idx],x)),centers)))
vq[idx]/=np.sum(vq[idx])
#3.Accumulate the residuals between descriptors and cluster centers
for k in range(nClus):
diff_data=dataEncode-centers[k]
for i in range(nSmp):
diff_data[i]*=vq[i,k]
vlad[k]=np.sum(diff_data,axis=0)
#4.Normalize the finish the final encoding procedure
if normalize==0:
#Each vector vk is divided by the total mass of features associated to it \sum_i q_{ik}
for i in range(nClus):
totalmass=sum(vq==i)
vlad[i]/=totalmass
elif normalize==1:#Apply sign(z)sqrt(|z|)is applied to all scalar components
vlad=np.sign(vlad)*np.sqrt(np.abs(vlad))
elif normalize==2:#Vectors vk are divided by their norm ∥v_k∥_2.
for i in range(nClus):
vlad[i]=vlad[i]/np.sqrt(np.sum(vlad[i]**2))
elif normalize==3:#Component-wise l2 normalization.
vlad/=np.sqrt(np.sum(vlad**2))
else:
raise ValueError('Invalid normalization option.')
return vlad.flatten()
if __name__=='__main__':
dataLearn=np.random.rand(1000,1)
dataEncode=np.random.rand(100,1)
nClus=5
vlad=VLADFeatures(dataLearn,dataEncode,nClus,method='kmeans',encode='soft',normalize=3)
print(vlad)