Skip to content

Several Innput Variable Selection Methods for Forecasting Research in Water Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

johnswyou/hydroIVS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

hydroIVS

This package implements several input variable selection methods. Currently implemented methods are:

  • none: No input variable selection
  • boruta: Input Variable Selection using the Boruta algorithm.
  • rrf: Input Variable Selection (IVS) using feature importance scores from fitting a regularized random forrest (rrf) regression model.
  • ea_cmi_htc: Edgeworth Approximation (EA) based Shannon Conditional Mutual Information (CMI) Input Variable Selection (IVS) using the Hampel Test Criterion (HTC) to identify significant inputs.
  • ea_cmi_tol: Edgeworth Approximation (EA) based Shannon Conditional Mutual Information (CMI) Input Variable Selection (IVS) using ratio of CMI over Mutual Information (MI) to identify significant inputs.
  • knn_cmi_tol: K nearest neighbour (KNN) based Shannon Conditional Mutual Information (CMI) Input Variable Selection (IVS) using ratio of CMI over Mutual Information (MI) to identify significant inputs.
  • knn_cmi_bi_tol: Bias Improved (BI) K nearest neighbour (KNN) based Shannon Conditional Mutual Information (CMI) Input Variable Selection (IVS) using ratio of CMI over Mutual Information (MI) to identify significant inputs.
  • pmis_bic: Partial Mutual Information Selection (PMIS) using the Bayesian Information Criterion (BIC) to identify significant inputs.
  • pcis_bic: Partial Correlation Input Selection (PCIS) using the Bayesian Information Criterion (BIC) to identify significant inputs.

Installation

You can install the development version of hydroIVS from GitHub with:

# install.packages("devtools")
devtools::install_github("johnswyou/hydroIVS")

Example

Here is a basic example:

library(hydroIVS)
library(wooldridge)

set.seed(1648)

data("hprice3")

hprice2$lprice <- NULL

head(hprice2)
#>   price crime  nox rooms dist radial proptax stratio lowstat     lnox lproptax
#> 1 24000 0.006 5.38  6.57 4.09      1    29.6    15.3    4.98 1.682688 5.690360
#> 2 21599 0.027 4.69  6.42 4.97      2    24.2    17.8    9.14 1.545433 5.488938
#> 3 34700 0.027 4.69  7.18 4.97      2    24.2    17.8    4.03 1.545433 5.488938
#> 4 33400 0.032 4.58  7.00 6.06      3    22.2    18.7    2.94 1.521699 5.402678
#> 5 36199 0.069 4.58  7.15 6.06      3    22.2    18.7    5.33 1.521699 5.402678
#> 6 28701 0.030 4.58  6.43 6.06      3    22.2    18.7    5.21 1.521699 5.402678

y <- hprice2$price
X <- hprice2[, 2:ncol(hprice2)]
X <- as.matrix(X)

# *******************************************
# Partial Correlation Input Selection (PCIS)
# *******************************************

# Bayesian Information Criterion (BIC) used to identify significant inputs.
ivsIOData(y, X, ivsm = "pcis_bic")
#> $sel_inputs
#> [1]  8  3  7  4  2  1  5 10
#> 
#> $names_sel_inputs
#> [1] "lowstat"  "rooms"    "stratio"  "dist"     "nox"      "crime"    "radial"  
#> [8] "lproptax"
#> 
#> $scores
#> [1] 0.52760 0.21560 0.11020 0.03114 0.06044 0.01381 0.01370 0.03432

# ********************************************************
# Edgeworth Approximation (EA) based Shannon Conditional 
# Mutual Information (CMI) Input Variable Selection (IVS) 
# ********************************************************

# ivs_param indicates ratio of CMI over Mutual Information (MI) 
# used to identify significant inputs.
ivsIOData(y, X, ivsm = "ea_cmi_tol", ivs_param = 0.1)
#> 
#> EA_CMI_TOL ROUTINE COMPLETED
#>   Input    CMI    MI CMI.MI.ratio CMIevals CPUtime ElapsedTime
#> 1     3 0.6670 0.667       1.0000       10       0        0.05
#> 2     1 0.4288 1.096       0.3913       19       0        0.06
#> 3     8 0.1540 1.250       0.1233       27       0        0.10
#> 4     7 0.1275 1.377       0.0926       34       0        0.14
#> $sel_inputs
#> [1] 3 1 8
#> 
#> $names_sel_inputs
#> [1] "rooms"   "crime"   "lowstat"
#> 
#> $scores
#> [1] 0.6670 0.4288 0.1540

# ********************************************************
# K nearest neighbour (KNN) based Shannon Conditional 
# Mutual Information (CMI) Input Variable Selection (IVS) 
# ********************************************************

# ivs_param[1] indicates ratio of CMI over Mutual Information (MI) 
# used to identify significant inputs.

# ivs_param[2] indicates number of nearest neighbors
ivsIOData(y, X, ivsm = "knn_cmi_tol", ivs_param = c(0.1, 5))
#> 
#> KNN_CMI_TOL ROUTINE COMPLETED
#>   Input      CMI     MI CMI.MI.ratio CMIevals CPUtime ElapsedTime
#> 1     8 0.422900 0.4229      1.00000       10    0.13        1.78
#> 2     3 0.008007 0.4439      0.01804       19    0.27        5.16
#> $sel_inputs
#> [1] 8
#> 
#> $names_sel_inputs
#> [1] "lowstat"
#> 
#> $scores
#> [1] 0.4229

References

Quilty, J., Adamowski, J., Khalil, B., & Rathinasamy, M. (2016). Bootstrap rank‐ordered conditional mutual information (BROCMI): A nonlinear input variable selection method for Water Resources Modeling. Water Resources Research, 52(3), 2299–2326. https://doi.org/10.1002/2015wr016959

Galelli S., Humphrey G.B., Maier H.R., Castelletti A., Dandy G.C. and Gibbs M.S. (2014) An evaluation framework for input variable selection algorithms for environmental data-driven models, Environmental Modelling and Software, 62, 33-51, DOI: 10.1016/j.envsoft.2014.08.015.

Kursa, M. B., & Rudnicki, W. R. (2010). Feature Selection with the Boruta Package. Journal of Statistical Software, 36(11), 1–13. https://doi.org/10.18637/jss.v036.i11

H. Deng(2013). Guided Random Forest in the RRF Package. arXiv:1306.0237.

H. Deng and G. Runger (2012). Feature Selection via Regularized Trees. The 2012 International Joint Conference on Neural Networks (IJCNN).

Kugiumtzis, D. (2013), Direct-coupling measure for nonuniform embedding, Physical Review E, 87, 062918.

Tsimpiris, A., I. Vlachos, and D. Kugiumtzis (2012), Nearest neighbour estimation of conditional mutual information in feature selection, Expert Syst. Appl., 39, 697-708.

Marc Van Hulle. Edgeworth approximation of multivariate differential entropy. Neural Computation, 17(9), 1903-1910, 2005.

I. Vlachos, D. Kugiumtzis, “Non-uniform state space reconstruction and coupling detection”, Physical Review E, Vol 82, 016207, 2010

May, R. J., H. R. Maier, G. C. Dandy, and T. Fernando (2008a), Non-linear variable selection for artificial neural networks using partial mutual information, Environ. Modell. Software, 23(10-11), 1312-1326.

About

Several Innput Variable Selection Methods for Forecasting Research in Water Resources

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages