Skip to content

Latest commit

 

History

History
 
 

hmr

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

HMR

Introduction

We provide the config files for HMR: End-to-End Recovery of Human Shape and Pose.

@inproceedings{HMR,
  author    = {Angjoo Kanazawa and
               Michael J. Black and
               David W. Jacobs and
               Jitendra Malik},
  title     = {End-to-End Recovery of Human Shape and Pose},
  booktitle = {CVPR},
  year      = {2018}
}

Notes

Download the above resources and arrange them in the following file structure:

mmhuman3d
├── mmhuman3d
├── docs
├── tests
├── tools
├── configs
└── data
    ├── body_models
    │   ├── J_regressor_extra.npy
    │   ├── J_regressor_h36m.npy
    │   ├── smpl_mean_params.npz
    │   └── smpl
    │       ├── SMPL_FEMALE.pkl
    │       ├── SMPL_MALE.pkl
    │       └── SMPL_NEUTRAL.pkl
    ├── preprocessed_datasets
    │   ├── cmu_mosh.npz
    │   ├── coco_2014_train.npz
    │   ├── h36m_mosh_train.npz
    │   ├── lspet_train.npz
    │   ├── lsp_train.npz
    │   ├── mpi_inf_3dhp_train.npz
    │   ├── mpii_train.npz
    │   └── pw3d_test.npz
    └── datasets
        ├── coco
        ├── h36m
        ├── lspet
        ├── lsp
        ├── mpi_inf_3dhp
        ├── mpii
        └── pw3d

Results and Models

We evaluate HMR on 3DPW. Values are MPJPE/PA-MPJPE.

Config 3DPW Download
resnet50_hmr_pw3d.py 112.34 / 67.53 model | log