forked from coq-community/corn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMoreIntegrals.v
756 lines (671 loc) · 22 KB
/
MoreIntegrals.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
(* Copyright © 1998-2006
* Henk Barendregt
* Luís Cruz-Filipe
* Herman Geuvers
* Mariusz Giero
* Rik van Ginneken
* Dimitri Hendriks
* Sébastien Hinderer
* Bart Kirkels
* Pierre Letouzey
* Iris Loeb
* Lionel Mamane
* Milad Niqui
* Russell O’Connor
* Randy Pollack
* Nickolay V. Shmyrev
* Bas Spitters
* Dan Synek
* Freek Wiedijk
* Jan Zwanenburg
*
* This work is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This work is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this work; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*)
Require Export Integral.
Require Export MoreFunctions.
Section Lemmas.
(** printing Integral %\ensuremath{\int}% #∫# *)
(** printing integral' %\ensuremath{\int}% #∫# *)
(**
* The generalized integral
In this file we extend the definition of integral to allow for
arbitrary integration domains (that is, not requiring that the lower
endpoint of integration be less or equal than the upper endpoint) and
we prove the fundamental properties of the new operator.
%\begin{convention}% Let [a, b : IR] and assume that [F] and [G] are two
partial functions continuous in [[Min(a,b),Max(a,b)]].
%\end{convention}%
** Definitions
Before we define the new integral we need to some trivial interval inclusions.
*)
Variables a b : IR.
Hypothesis Hab : Min a b [<=] Max a b.
Lemma compact_inc_Min_lft : forall H, included (compact (Min a b) a H) (Compact Hab).
Proof.
intros.
apply included_compact; split.
apply leEq_reflexive.
apply Min_leEq_Max.
apply Min_leEq_lft.
apply lft_leEq_Max.
Qed.
Lemma compact_inc_Min_rht : forall H, included (compact (Min a b) b H) (Compact Hab).
Proof.
intros.
apply included_compact; split.
apply leEq_reflexive.
apply Min_leEq_Max.
apply Min_leEq_rht.
apply rht_leEq_Max.
Qed.
End Lemmas.
Section Definitions.
(**
The integral is defined by the formula
$\int_a^bf=\int_{\min(a,b)}^bf-\int_{\min(a,b)}^af$#∫<sub>a</sub><sup>b</sup>f=∫<sub>min(a,b)</sub><sup>b</sup>f-∫<sub>min(a,b)</sub><sup>a</sup>f#,
inspired by the domain union rule; obviously it coincides with the
classical definition, and it collapses to the old one in the case [a
[<=] b].
*)
Variables a b : IR.
Hypothesis Hab : Min a b [<=] Max a b.
Variable F : PartIR.
Hypothesis HF : Continuous_I Hab F.
Lemma Integral_inc1 : Continuous_I (Min_leEq_lft a b) F.
Proof.
eapply included_imp_contin with (Hab := Hab).
2: apply HF.
apply compact_inc_Min_lft.
Qed.
Lemma Integral_inc2 : Continuous_I (Min_leEq_rht a b) F.
Proof.
eapply included_imp_contin with (Hab := Hab).
2: apply HF.
apply compact_inc_Min_rht.
Qed.
Definition Integral :=
integral _ _ (Min_leEq_rht a b) F Integral_inc2[-]integral _ _ (Min_leEq_lft a b) _ Integral_inc1.
Lemma Integral_integral : forall Hab' HF', Integral [=] integral a b Hab' F HF'.
Proof.
intros.
unfold Integral in |- *.
astepr (integral a b Hab' F HF'[-][0]).
apply cg_minus_wd.
apply integral_wd'.
apply leEq_imp_Min_is_lft; assumption.
algebra.
apply integral_empty.
apply leEq_imp_Min_is_lft; assumption.
Qed.
End Definitions.
Implicit Arguments Integral [a b Hab F].
Section Properties_of_Integral.
(**
** Properties of the Integral
All our old properties carry over to this new definition---and some
new ones, too. We begin with (strong) extensionality.
*)
Variables a b : IR.
Hypothesis Hab : Min a b [<=] Max a b.
Variables F G : PartIR.
Hypothesis contF : Continuous_I Hab F.
Hypothesis contG : Continuous_I Hab G.
Lemma Integral_strext : Integral contF [#] Integral contG ->
{x : IR | Compact Hab x | forall Hx Hx', Part F x Hx [#] Part G x Hx'}.
Proof.
intro H.
unfold Integral in H.
elim (cg_minus_strext _ _ _ _ _ H); intro.
elim (integral_strext _ _ _ _ _ _ _ a0); intros.
exists x.
apply compact_inc_Min_rht with (H := Min_leEq_rht a b); assumption.
assumption.
elim (integral_strext _ _ _ _ _ _ _ b0); intros.
exists x.
apply compact_inc_Min_lft with (H := Min_leEq_lft a b); assumption.
assumption.
Qed.
Lemma Integral_strext' : forall c d Hcd HF1 HF2,
Integral (Hab:=Hab) (F:=F) HF1 [#] Integral (a:=c) (b:=d) (Hab:=Hcd) (F:=F) HF2 ->
a [#] c or b [#] d.
Proof.
intros c d Hcd HF1 HF2 H.
elim (cg_minus_strext _ _ _ _ _ H); clear H; intro H;
elim (integral_strext' _ _ _ _ _ _ _ _ _ H); clear H; intro H.
elim (Min_strext_unfolded _ _ _ _ H); auto.
auto.
elim (Min_strext_unfolded _ _ _ _ H); auto.
auto.
Qed.
Lemma Integral_wd : Feq (Compact Hab) F G -> Integral contF [=] Integral contG.
Proof.
intros; unfold Integral in |- *.
apply cg_minus_wd; apply integral_wd.
apply included_Feq with (Compact Hab).
apply compact_inc_Min_rht.
assumption.
apply included_Feq with (Compact Hab).
apply compact_inc_Min_lft.
assumption.
Qed.
Lemma Integral_wd' : forall a' b' Ha'b' contF', a [=] a' -> b [=] b' ->
Integral contF [=] Integral (a:=a') (b:=b') (Hab:=Ha'b') (F:=F) contF'.
Proof.
intros.
unfold Integral in |- *.
apply cg_minus_wd; apply integral_wd'; try apply bin_op_wd_unfolded; algebra.
Qed.
(**
The integral is a linear operator.
*)
Lemma Integral_const : forall c (H : Continuous_I Hab [-C-]c), Integral H [=] c[*] (b[-]a).
Proof.
intros.
unfold Integral in |- *.
rstepr (c[*] (b[-]Min a b) [-]c[*] (a[-]Min a b)).
apply cg_minus_wd; apply integral_const.
Qed.
Lemma Integral_comm_scal : forall c (H : Continuous_I Hab (c{**}F)), Integral H [=] c[*]Integral contF.
Proof.
intros.
unfold Integral in |- *.
eapply eq_transitive_unfolded.
2: apply eq_symmetric_unfolded; apply dist_2a.
apply cg_minus_wd; apply integral_comm_scal.
Qed.
Lemma Integral_plus : forall H : Continuous_I Hab (F{+}G), Integral H [=] Integral contF[+]Integral contG.
Proof.
intro.
unfold Integral in |- *.
cut (forall x y z w : IR, x[-]y[+] (z[-]w) [=] x[+]z[-] (y[+]w)); intros.
2: rational.
eapply eq_transitive_unfolded.
2: apply eq_symmetric_unfolded; apply H0.
apply cg_minus_wd; apply integral_plus.
Qed.
Lemma Integral_inv : forall H : Continuous_I Hab {--}F, Integral H [=] [--] (Integral contF).
Proof.
intro.
unfold Integral in |- *.
cut (forall x y : IR, [--] (x[-]y) [=] [--]x[-][--]y); intros.
2: rational.
eapply eq_transitive_unfolded.
2: apply eq_symmetric_unfolded; apply H0.
apply cg_minus_wd; apply integral_inv.
Qed.
Lemma Integral_minus : forall H : Continuous_I Hab (F{-}G), Integral H [=] Integral contF[-]Integral contG.
Proof.
intro.
unfold Integral in |- *.
cut (forall x y z w : IR, x[-]y[-] (z[-]w) [=] x[-]z[-] (y[-]w)); intros.
2: rational.
eapply eq_transitive_unfolded.
2: apply eq_symmetric_unfolded; apply H0.
apply cg_minus_wd; apply integral_minus.
Qed.
Lemma linear_Integral : forall alpha beta (H : Continuous_I Hab (alpha{**}F{+}beta{**}G)),
Integral H [=] alpha[*]Integral contF[+]beta[*]Integral contG.
Proof.
intros; unfold Integral in |- *.
cut (forall x y z r s t : IR, x[*] (y[-]z) [+]r[*] (s[-]t) [=] x[*]y[+]r[*]s[-] (x[*]z[+]r[*]t)).
2: intros; rational.
intro; eapply eq_transitive_unfolded.
2: apply eq_symmetric_unfolded; apply H0.
clear H0.
apply cg_minus_wd; apply linear_integral.
Qed.
(**
If the endpoints are equal then the integral vanishes.
*)
Lemma Integral_empty : a [=] b -> Integral contF [=] [0].
Proof.
intros.
unfold Integral in |- *.
astepr (ZeroR[-][0]).
apply cg_minus_wd; apply integral_empty.
astepr a; apply leEq_imp_Min_is_lft; apply eq_imp_leEq; assumption.
apply leEq_imp_Min_is_lft; apply eq_imp_leEq; assumption.
Qed.
(**
And the norm provides an upper bound for the absolute value of the integral.
*)
Lemma Integral_leEq_norm : AbsIR (Integral contF) [<=] Norm_Funct contF[*]AbsIR (b[-]a).
Proof.
unfold Integral in |- *.
eapply leEq_transitive.
apply triangle_IR_minus.
apply leEq_transitive with (Norm_Funct contF[*] (b[-]Min a b) [+]Norm_Funct contF[*] (a[-]Min a b)).
apply plus_resp_leEq_both; (eapply leEq_transitive;
[ apply integral_leEq_norm | apply mult_resp_leEq_rht ]).
apply leEq_Norm_Funct; intros.
apply norm_bnd_AbsIR; apply compact_inc_Min_rht with (H := Min_leEq_rht a b); assumption.
apply shift_leEq_minus; astepl (Min a b); apply Min_leEq_rht.
apply leEq_Norm_Funct; intros.
apply norm_bnd_AbsIR; apply compact_inc_Min_lft with (H := Min_leEq_lft a b); assumption.
apply shift_leEq_minus; astepl (Min a b); apply Min_leEq_lft.
eapply leEq_wdl.
2: apply ring_dist_unfolded.
apply mult_resp_leEq_lft.
2: apply positive_norm.
rstepl (a[+]b[-]Two[*]Min a b).
apply shift_minus_leEq; apply shift_leEq_plus'.
apply shift_leEq_mult' with (two_ap_zero IR).
apply pos_two.
apply leEq_Min.
apply shift_div_leEq.
apply pos_two.
apply shift_minus_leEq; apply shift_leEq_plus'.
rstepl (b[-]a); apply leEq_AbsIR.
apply shift_div_leEq.
apply pos_two.
apply shift_minus_leEq; apply shift_leEq_plus'.
rstepl ( [--] (b[-]a)); apply inv_leEq_AbsIR.
Qed.
End Properties_of_Integral.
Section More_Properties.
(**
Two other ways of stating the addition law for domains.
*)
Lemma integral_plus_Integral : forall a b Hab F c Hac Hcb Hab' Hac' Hcb',
integral c b Hcb F Hcb' [=] integral a b Hab F Hab'[-]integral a c Hac F Hac'.
Proof.
intros.
rstepl (integral a c Hac F Hac'[+]integral c b Hcb F Hcb'[-]integral a c Hac F Hac').
apply cg_minus_wd.
apply integral_plus_integral.
algebra.
Qed.
Lemma integral_plus_integral' : forall a b Hab F c Hac Hcb Hab' Hac' Hcb',
integral a c Hac F Hac' [=] integral a b Hab F Hab'[-]integral c b Hcb F Hcb'.
Proof.
intros.
rstepl (integral a c Hac F Hac'[+]integral c b Hcb F Hcb'[-]integral c b Hcb F Hcb').
apply cg_minus_wd.
apply integral_plus_integral.
algebra.
Qed.
(**
And now we can prove the addition law for domains with our general operator.
%\begin{convention}% Assume [c : IR].
%\end{convention}%
*)
Variables a b c : IR.
(* begin show *)
Hypothesis Hab' : Min a b [<=] Max a b.
Hypothesis Hac' : Min a c [<=] Max a c.
Hypothesis Hcb' : Min c b [<=] Max c b.
Hypothesis Habc' : Min (Min a b) c [<=] Max (Max a b) c.
(* end show *)
Variable F : PartIR.
(* begin show *)
Hypothesis Hab : Continuous_I Hab' F.
Hypothesis Hac : Continuous_I Hac' F.
Hypothesis Hcb : Continuous_I Hcb' F.
Hypothesis Habc : Continuous_I Habc' F.
(* end show *)
(* begin hide *)
Let le_abc_ab : Min (Min a b) c [<=] Min a b.
Proof.
apply Min_leEq_lft.
Qed.
Let le_abc_ac : Min (Min a b) c [<=] Min a c.
Proof.
apply leEq_Min.
eapply leEq_transitive.
apply Min_leEq_lft.
apply Min_leEq_lft.
apply Min_leEq_rht.
Qed.
Let le_abc_cb : Min (Min a b) c [<=] Min c b.
Proof.
apply leEq_Min.
apply Min_leEq_rht.
eapply leEq_transitive.
apply Min_leEq_lft.
apply Min_leEq_rht.
Qed.
Let le_abc_a : Min (Min a b) c [<=] a.
Proof.
eapply leEq_transitive.
apply Min_leEq_lft.
apply Min_leEq_lft.
Qed.
Let le_abc_b : Min (Min a b) c [<=] b.
Proof.
eapply leEq_transitive.
apply Min_leEq_lft.
apply Min_leEq_rht.
Qed.
Let le_abc_c : Min (Min a b) c [<=] c.
Proof.
apply Min_leEq_rht.
Qed.
Let le_ab_a : Min a b [<=] a.
Proof.
apply Min_leEq_lft.
Qed.
Let le_cb_c : Min c b [<=] c.
Proof.
apply Min_leEq_lft.
Qed.
Let le_ac_a : Min a c [<=] a.
Proof.
apply Min_leEq_lft.
Qed.
Let le_ab_b : Min a b [<=] b.
Proof.
apply Min_leEq_rht.
Qed.
Let le_cb_b : Min c b [<=] b.
Proof.
apply Min_leEq_rht.
Qed.
Let le_ac_c : Min a c [<=] c.
Proof.
apply Min_leEq_rht.
Qed.
Let Habc_abc : Compact Habc' (Min (Min a b) c).
Proof.
apply compact_inc_lft.
Qed.
Let Habc_ab : Continuous_I le_abc_ab F.
Proof.
apply included_imp_contin with (Hab := Habc').
2: apply Habc.
apply included_compact; [ apply Habc_abc | split ].
apply Min_leEq_lft.
eapply leEq_transitive.
apply Min_leEq_Max.
apply lft_leEq_Max.
Qed.
Let Habc_ac : Continuous_I le_abc_ac F.
Proof.
apply included_imp_contin with (Hab := Habc').
2: apply Habc.
apply included_compact; [ apply Habc_abc | split ].
apply le_abc_ac.
eapply leEq_transitive.
apply Min_leEq_Max.
apply Max_leEq.
eapply leEq_transitive.
2: apply lft_leEq_Max.
apply lft_leEq_Max.
apply rht_leEq_Max.
Qed.
Let Habc_cb : Continuous_I le_abc_cb F.
Proof.
apply included_imp_contin with (Hab := Habc').
2: apply Habc.
apply included_compact; [ apply Habc_abc | split ].
apply le_abc_cb.
eapply leEq_transitive.
2: apply rht_leEq_Max.
apply Min_leEq_lft.
Qed.
Let Habc_a : Continuous_I le_abc_a F.
Proof.
apply included_imp_contin with (Hab := Habc').
2: apply Habc.
apply included_compact; [ apply Habc_abc | split ].
apply le_abc_a.
eapply leEq_transitive.
2: apply lft_leEq_Max.
apply lft_leEq_Max.
Qed.
Let Habc_b : Continuous_I le_abc_b F.
Proof.
apply included_imp_contin with (Hab := Habc').
2: apply Habc.
apply included_compact; [ apply Habc_abc | split ].
apply le_abc_b.
eapply leEq_transitive.
2: apply lft_leEq_Max.
apply rht_leEq_Max.
Qed.
Let Habc_c : Continuous_I le_abc_c F.
Proof.
apply included_imp_contin with (Hab := Habc').
2: apply Habc.
apply included_compact; [ apply Habc_abc | split ].
apply le_abc_c.
apply rht_leEq_Max.
Qed.
(* end hide *)
Lemma Integral_plus_Integral : Integral Hab [=] Integral Hac[+]Integral Hcb.
Proof.
unfold Integral in |- *.
apply eq_transitive_unfolded with
(integral _ _ le_abc_b _ Habc_b[-]integral _ _ le_abc_ab _ Habc_ab[-]
(integral _ _ le_abc_a _ Habc_a[-]integral _ _ le_abc_ab _ Habc_ab)).
apply cg_minus_wd; apply integral_plus_Integral.
rstepl (integral _ _ le_abc_b _ Habc_b[-]integral _ _ le_abc_a _ Habc_a).
rstepl (integral _ _ le_abc_c _ Habc_c[-]integral _ _ le_abc_ac _ Habc_ac[-]
(integral _ _ le_abc_a _ Habc_a[-]integral _ _ le_abc_ac _ Habc_ac) [+]
(integral _ _ le_abc_b _ Habc_b[-]integral _ _ le_abc_cb _ Habc_cb[-]
(integral _ _ le_abc_c _ Habc_c[-]integral _ _ le_abc_cb _ Habc_cb))).
apply eq_symmetric_unfolded; apply bin_op_wd_unfolded; apply cg_minus_wd;
apply integral_plus_Integral.
Qed.
(**
Notice that, unlike in the classical case, an extra hypothesis (the
continuity of [F] in the interval [[Min(a,b,c),Max(a,b,c)]]) must be assumed.
*)
End More_Properties.
Section Corollaries.
Variables a b : IR.
Hypothesis Hab : Min a b [<=] Max a b.
Variable F : PartIR.
Hypothesis contF : Continuous_I Hab F.
(** As a corollary, we get the following rule: *)
Lemma Integral_op : forall Hab' (contF' : Continuous_I (a:=Min b a) (b:=Max b a) Hab' F),
Integral contF [=] [--] (Integral contF').
Proof.
intros.
apply cg_inv_unique'.
cut (Continuous_I (Min_leEq_Max a a) F). intro H.
apply eq_transitive_unfolded with (Integral H).
cut (Min (Min a a) b [<=] Max (Max a a) b); intros.
apply eq_symmetric_unfolded; apply Integral_plus_Integral with H0.
cut (included (Compact H0) (Compact Hab)). intro H1.
exact (included_imp_contin _ _ _ _ _ _ _ H1 contF).
apply included_compact.
split.
apply leEq_Min.
apply leEq_transitive with a.
apply Min_leEq_lft.
apply eq_imp_leEq; apply eq_symmetric_unfolded; apply Min_id.
apply Min_leEq_rht.
apply leEq_transitive with b.
apply Min_leEq_rht.
apply rht_leEq_Max.
split.
apply leEq_transitive with b.
apply Min_leEq_rht.
apply rht_leEq_Max.
apply Max_leEq.
apply leEq_wdl with a.
apply lft_leEq_Max.
apply eq_symmetric_unfolded; apply Max_id.
apply rht_leEq_Max.
apply leEq_transitive with b.
apply Min_leEq_rht.
apply rht_leEq_Max.
apply Integral_empty; algebra.
apply included_imp_contin with (Hab := Hab).
2: apply contF.
intros x H.
apply compact_wd with a.
split.
apply Min_leEq_lft.
apply lft_leEq_Max.
inversion_clear H.
apply leEq_imp_eq.
eapply leEq_wdl.
apply H0.
apply Min_id.
eapply leEq_wdr.
apply H1.
apply Max_id.
Qed.
(** Finally, some miscellaneous results: *)
Lemma Integral_less_norm : a [#] b -> forall x, Compact Hab x -> forall Hx,
AbsIR (F x Hx) [<] Norm_Funct contF -> AbsIR (Integral contF) [<] Norm_Funct contF[*]AbsIR (b[-]a).
Proof.
intros H x H0 Hx H1.
set (N := Norm_Funct contF) in *.
elim (ap_imp_less _ _ _ H); intro.
apply less_wdr with (N[*] (b[-]a)).
eapply less_wdl.
eapply less_leEq_trans.
apply integral_less_norm with (contF := included_imp_contin _ _ _ _ _ _ _
(compact_map2 a b (less_leEq _ _ _ a0) Hab) contF) (Hx := Hx); auto.
apply compact_map1 with (Hab' := Hab); auto.
eapply less_leEq_trans.
apply H1.
unfold N in |- *; apply included_imp_norm_leEq.
apply compact_map1.
apply mult_resp_leEq_rht.
unfold N in |- *; apply included_imp_norm_leEq.
apply compact_map2.
apply shift_leEq_minus; apply less_leEq.
astepl a; auto.
apply AbsIR_wd; apply eq_symmetric_unfolded.
apply Integral_integral.
apply mult_wdr.
apply eq_symmetric_unfolded; apply AbsIR_eq_x.
apply shift_leEq_minus; apply less_leEq.
astepl a; auto.
apply less_wdr with (N[*] (a[-]b)).
set (Hmin := Min_leEq_Max b a) in *.
cut (included (Compact Hmin) (Compact Hab)).
cut (included (Compact Hab) (Compact Hmin)). intros H2 H3.
cut (Continuous_I Hmin F). intro H4.
eapply less_wdl.
eapply less_leEq_trans.
apply integral_less_norm with (contF := included_imp_contin _ _ _ _ _ _ _
(compact_map2 _ _ (less_leEq _ _ _ b0) Hmin) H4) (Hx := Hx); auto.
apply compact_map1 with (Hab' := Hmin); auto.
eapply less_leEq_trans.
apply H1.
unfold N in |- *; apply included_imp_norm_leEq.
eapply included_trans.
2: apply compact_map1 with (Hab' := Hmin).
apply H2.
apply mult_resp_leEq_rht.
unfold N in |- *; apply included_imp_norm_leEq.
eapply included_trans.
apply compact_map2 with (Hab' := Hmin).
apply H3.
apply shift_leEq_minus; apply less_leEq.
astepl b; auto.
eapply eq_transitive_unfolded.
apply AbsIR_inv.
apply AbsIR_wd; apply eq_symmetric_unfolded.
apply eq_transitive_unfolded with ( [--] (Integral (included_imp_contin _ _ _ _ _ _ _ H3 contF))).
apply Integral_op.
apply un_op_wd_unfolded.
apply Integral_integral.
apply included_imp_contin with (Hab := Hab); auto.
red in |- *; intros.
apply compact_wd' with (Hab := Hab).
apply Min_comm.
apply Max_comm.
auto.
red in |- *; intros.
apply compact_wd' with (Hab := Hmin).
apply Min_comm.
apply Max_comm.
auto.
apply mult_wdr.
eapply eq_transitive_unfolded.
apply eq_symmetric_unfolded; apply AbsIR_eq_x.
apply shift_leEq_minus; apply less_leEq.
astepl b; auto.
apply AbsIR_minus.
Qed.
Lemma ub_Integral : a [#] b -> forall c, (forall x, Compact Hab x -> forall Hx, AbsIR (F x Hx) [<=] c) ->
forall x, Compact Hab x -> forall Hx, AbsIR (F x Hx) [<] c -> AbsIR (Integral contF) [<] c[*]AbsIR (b[-]a).
Proof.
intros H c H0 x H1 Hx H2.
set (N := Norm_Funct contF) in *.
cut (N [<=] c); intros.
elim (less_cotransitive_unfolded _ _ _ H2 N); intros.
apply less_leEq_trans with (N[*]AbsIR (b[-]a)).
unfold N in |- *; apply Integral_less_norm with x Hx; auto.
apply mult_resp_leEq_rht; auto.
apply AbsIR_nonneg.
apply leEq_less_trans with (N[*]AbsIR (b[-]a)).
unfold N in |- *; apply Integral_leEq_norm.
apply mult_resp_less; auto.
apply AbsIR_pos.
apply minus_ap_zero.
apply ap_symmetric_unfolded; auto.
unfold N in |- *; apply leEq_Norm_Funct; auto.
Qed.
End Corollaries.
Lemma Integral_ap_zero : forall a b Hab (F : PartIR) contF, a [#] b -> forall x,
Compact Hab x -> forall Hx, [0] [<] F x Hx -> (forall x, Compact Hab x -> forall Hx, [0] [<=] F x Hx) ->
[0] [<] AbsIR (Integral (a:=a) (b:=b) (Hab:=Hab) (F:=F) contF).
Proof.
intros a b Hab F contF H x H0 Hx H1 H2.
elim (ap_imp_less _ _ _ H); intro.
eapply less_leEq_trans.
2: apply leEq_AbsIR.
eapply less_wdr.
2: apply eq_symmetric_unfolded.
2: apply Integral_integral with (HF' := included_imp_contin _ _ _ _ _ _ _
(compact_map2 a b (less_leEq _ _ _ a0) Hab) contF).
eapply integral_gt_zero with x Hx; auto.
exact (compact_map1 _ _ (less_leEq _ _ _ a0) Hab x H0).
intros x0 H3 Hx0; apply H2.
exact (compact_map2 _ _ (less_leEq _ _ _ a0) Hab _ H3).
cut (included (Compact (Min_leEq_Max b a)) (Compact Hab)).
2: apply included_compact; split.
2: apply eq_imp_leEq; apply Min_comm.
2: apply leEq_transitive with a; [ apply Min_leEq_rht | apply lft_leEq_Max ].
2: apply leEq_transitive with b; [ apply Min_leEq_rht | apply lft_leEq_Max ].
2: apply eq_imp_leEq; apply Max_comm.
cut (included (Compact Hab) (Compact (Min_leEq_Max b a))).
2: apply included_compact; split.
2: apply eq_imp_leEq; apply Min_comm.
2: apply leEq_transitive with b; [ apply Min_leEq_rht | apply lft_leEq_Max ].
2: apply leEq_transitive with a; [ apply Min_leEq_rht | apply lft_leEq_Max ].
2: apply eq_imp_leEq; apply Max_comm.
intros H3 H4.
eapply less_leEq_trans.
2: apply inv_leEq_AbsIR.
eapply less_wdr.
2: apply Integral_op with (contF := included_imp_contin _ _ _ _ _ _ _ H4 contF).
eapply less_wdr.
2: apply eq_symmetric_unfolded.
2: apply Integral_integral with (HF' := included_imp_contin _ _ _ _ _ _ _
(compact_map2 _ _ (less_leEq _ _ _ b0) (Min_leEq_Max b a))
(included_imp_contin _ _ _ _ _ _ _ H4 contF)).
eapply integral_gt_zero with x Hx; auto.
exact (compact_map1 _ _ (less_leEq _ _ _ b0) (Min_leEq_Max b a) x (H3 x H0)).
intros x0 H5 Hx0; apply H2.
exact (H4 _ (compact_map2 _ _ (less_leEq _ _ _ b0) (Min_leEq_Max _ _) _ H5)).
Qed.
Lemma Integral_eq_zero : forall a b Hab (F : PartIR) contF x, Compact Hab x ->
(forall Hx, [0] [<] F x Hx) -> (forall x, Compact Hab x -> forall Hx, [0] [<=] F x Hx) ->
Integral (a:=a) (b:=b) (Hab:=Hab) (F:=F) contF [=] [0] -> a [=] b.
Proof.
intros a b Hab F contF x H X H0 H1.
apply not_ap_imp_eq; intro.
apply less_irreflexive_unfolded with (x := ZeroR).
apply less_wdr with (AbsIR (Integral contF)).
2: Step_final (AbsIR [0]).
apply Integral_ap_zero with x (contin_imp_inc _ _ _ _ contF x H); auto.
Qed.