Skip to content

Commit

Permalink
add tool for generating test data for longformer (microsoft#6415)
Browse files Browse the repository at this point in the history
  • Loading branch information
tianleiwu authored Jan 27, 2021
1 parent 76dbd88 commit afd7b8b
Showing 1 changed file with 241 additions and 0 deletions.
241 changes: 241 additions & 0 deletions onnxruntime/python/tools/transformers/longformer/generate_test_data.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,241 @@
#-------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
#--------------------------------------------------------------------------

# Generate test data for a longformer model, so that we can use onnxruntime_perf_test.exe to evaluate the inference latency.

import sys
import argparse
import numpy as np
import os
import random
from pathlib import Path
from onnx import ModelProto, TensorProto, numpy_helper

sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from onnx_model import OnnxModel
from bert_test_data import fake_input_ids_data, fake_input_mask_data, output_test_data


def parse_arguments():
parser = argparse.ArgumentParser()

parser.add_argument('--model', required=True, type=str, help="bert onnx model path.")

parser.add_argument('--output_dir',
required=False,
type=str,
default=None,
help="output test data path. If not specified, .")

parser.add_argument('--batch_size', required=False, type=int, default=1, help="batch size of input")

parser.add_argument('--sequence_length',
required=False,
type=int,
default=128,
help="maximum sequence length of input")

parser.add_argument('--global_tokens', required=False, type=int, default=10, help="number of global tokens")

parser.add_argument('--input_ids_name', required=False, type=str, default=None, help="input name for input ids")

parser.add_argument('--input_mask_name',
required=False,
type=str,
default=None,
help="input name for attention mask")

parser.add_argument('--global_mask_name',
required=False,
type=str,
default=None,
help="input name for global attention mask")

parser.add_argument('--samples', required=False, type=int, default=1, help="number of test cases to be generated")

parser.add_argument('--seed', required=False, type=int, default=3, help="random seed")

parser.add_argument('--verbose', required=False, action='store_true', help="print verbose information")
parser.set_defaults(verbose=False)

args = parser.parse_args()
return args


def get_longformer_inputs(onnx_file, input_ids_name=None, input_mask_name=None, global_mask_name=None):
"""
Get graph inputs for longformer model.
"""
model = ModelProto()
with open(onnx_file, "rb") as f:
model.ParseFromString(f.read())

onnx_model = OnnxModel(model)
graph_inputs = onnx_model.get_graph_inputs_excluding_initializers()

if input_ids_name is not None:
input_ids = onnx_model.find_graph_input(input_ids_name)
if input_ids is None:
raise ValueError(f"Graph does not have input named {input_ids_name}")

input_mask = None
if input_mask_name:
input_mask = onnx_model.find_graph_input(input_mask_name)
if input_mask is None:
raise ValueError(f"Graph does not have input named {input_mask_name}")

global_mask = None
if global_mask_name:
global_mask = onnx_model.find_graph_input(global_mask_name)
if global_mask is None:
raise ValueError(f"Graph does not have input named {global_mask_name}")

expected_inputs = 1 + (1 if input_mask else 0) + (1 if global_mask else 0)
if len(graph_inputs) != expected_inputs:
raise ValueError(f"Expect the graph to have {expected_inputs} inputs. Got {len(graph_inputs)}")

return input_ids, input_mask, global_mask

if len(graph_inputs) != 3:
raise ValueError("Expect the graph to have 3 inputs. Got {}".format(len(graph_inputs)))

# Try guess the inputs based on naming.
input_ids = None
input_mask = None
global_mask = None
for input in graph_inputs:
input_name_lower = input.name.lower()
if "global" in input_name_lower:
global_mask = input
elif "mask" in input_name_lower:
input_mask = input
else:
input_ids = input

if input_ids and input_mask and global_mask:
return input_ids, input_mask, global_mask

raise ValueError("Fail to assign 3 inputs. You might try rename the graph inputs.")


def fake_global_mask_data(global_mask, batch_size, sequence_length, num_global_tokens):
"""
Fake data based on the graph input of segment_ids.
Args:
segment_ids (TensorProto): graph input of input tensor.
Returns:
data (np.array): the data for input tensor
"""
data_type = global_mask.type.tensor_type.elem_type
assert data_type in [TensorProto.FLOAT, TensorProto.INT32, TensorProto.INT64]

if num_global_tokens > 0:
assert num_global_tokens <= sequence_length
data = np.zeros((batch_size, sequence_length), dtype=np.int32)
temp = np.ones((batch_size, num_global_tokens), dtype=np.int32)
data[:temp.shape[0], :temp.shape[1]] = temp
else:
data = np.zeros((batch_size, sequence_length), dtype=np.int32)

if data_type == TensorProto.FLOAT:
data = np.float32(data)
elif data_type == TensorProto.INT64:
data = np.int64(data)

return data


def fake_test_data(batch_size,
sequence_length,
test_cases,
dictionary_size,
verbose,
random_seed,
input_ids,
input_mask,
global_mask,
num_global_tokens,
random_mask_length=False):
"""
Generate fake input data for test.
"""
assert input_ids is not None

np.random.seed(random_seed)
random.seed(random_seed)

all_inputs = []
for _ in range(test_cases):
input_1 = fake_input_ids_data(input_ids, batch_size, sequence_length, dictionary_size)
inputs = {input_ids.name: input_1}

if input_mask:
inputs[input_mask.name] = fake_input_mask_data(input_mask, batch_size, sequence_length, random_mask_length)

if global_mask:
inputs[global_mask.name] = fake_global_mask_data(global_mask, batch_size, sequence_length,
num_global_tokens)

if verbose and len(all_inputs) == 0:
print("Example inputs", inputs)
all_inputs.append(inputs)

return all_inputs


def generate_test_data(batch_size,
sequence_length,
test_cases,
seed,
verbose,
input_ids,
input_mask,
global_mask,
num_global_tokens,
random_mask_length=False):
dictionary_size = 10000
all_inputs = fake_test_data(batch_size, sequence_length, test_cases, dictionary_size, verbose, seed, input_ids,
input_mask, global_mask, num_global_tokens, random_mask_length)
if len(all_inputs) != test_cases:
print("Failed to create test data for test.")
return all_inputs


def create_longformer_test_data(model, output_dir, batch_size, sequence_length, test_cases, seed, verbose,
input_ids_name, input_mask_name, global_mask_name, num_global_tokens):

input_ids, input_mask, global_mask = get_longformer_inputs(model, input_ids_name, input_mask_name, global_mask_name)
all_inputs = generate_test_data(batch_size, sequence_length, test_cases, seed, verbose, input_ids, input_mask,
global_mask, num_global_tokens)

for i, inputs in enumerate(all_inputs):
output_test_data(output_dir, i, inputs)


def main():
args = parse_arguments()

output_dir = args.output_dir
if output_dir is None:
# Default output directory is a sub-directory under the directory of model.
output_dir = os.path.join(
Path(args.model).parent, "b{}_s{}_g{}".format(args.batch_size, args.sequence_length, args.global_tokens))

if output_dir is not None:
# create the output directory if not existed
path = Path(output_dir)
path.mkdir(parents=True, exist_ok=True)
else:
print("Directory existed. test data files will be overwritten.")

create_longformer_test_data(args.model, output_dir, args.batch_size, args.sequence_length, args.samples, args.seed,
args.verbose, args.input_ids_name, args.input_mask_name, args.global_mask_name,
args.global_tokens)

print("Test data is saved to directory:", output_dir)


if __name__ == "__main__":
main()

0 comments on commit afd7b8b

Please sign in to comment.